pp 1-6 | Cite as

Observation of Parkin-Mediated Mitophagy in Pancreatic β-Cells

Part of the Methods in Molecular Biology book series


Mitophagy is a cellular process of autophagy-based mitochondrial degradation that eliminates dysfunctional mitochondria and ensures cellular homeostasis. In pancreatic islet β-cells, mitochondria play a pivotal role in glucose-stimulated insulin secretion through ATP production from glucose oxidation. Recent studies have shown that impaired mitophagy and the subsequent mitochondrial compromise contribute to β-cell dysfunction and glucose intolerance. In this chapter, we describe a protocol to monitor Parkin-mediated mitophagy in pancreatic MIN6 β-cells using flow cytometry and a pH-sensitive fluorophore, mKeima.


Flow cytometry Mitophagy mKeima Pancreatic MIN6 β-cells Parkin Retrovirus 



This study was supported in part by Grants-in-Aid from the Ministry of Education, Science and Culture of Japan (MEXT) (KAKENHI 15K09144 to SM).


  1. 1.
    Mulder H, Ling C (2009) Mitochondrial dysfunction in pancreatic beta-cells in type 2 diabetes. Mol Cell Endocrinol 297(1–2):34–40CrossRefPubMedGoogle Scholar
  2. 2.
    Fajans SS, Bell GI, Polonsky KS (2001) Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med 345(13):971–980CrossRefPubMedGoogle Scholar
  3. 3.
    Zhang CY et al (2001) Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell 105(6):745–755CrossRefPubMedGoogle Scholar
  4. 4.
    Szabadkai G, Duchen MR (2009) Mitochondria mediated cell death in diabetes. Apoptosis 14(12):1405–1423CrossRefPubMedGoogle Scholar
  5. 5.
    Lu H, Koshkin V, Allister EM, Gyulkhandanyan AV, Wheeler MB (2010) Molecular and metabolic evidence for mitochondrial defects associated with beta-cell dysfunction in a mouse model of type 2 diabetes. Diabetes 59(2):448–459CrossRefPubMedGoogle Scholar
  6. 6.
    Hoshino A et al (2014) Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic beta-cell function in diabetes. Proc Natl Acad Sci U S A 111(8):3116–3121ADSCrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Liu L et al (2012) Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 14(2):177–185CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang J, Ney PA (2009) Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 16(7):939–946CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Heo JM, Ordureau A, Paulo JA, Rinehart J, Harper JW (2015) The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol Cell 60(1):7–20CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lazarou M et al (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524(7565):309–314ADSCrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wong YC, Holzbaur EL (2014) Optineurin is an autophagy receptor for damaged mitochondria in Parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc Natl Acad Sci U S A 111(42):E4439–E4448ADSCrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Takatori S, Ito G, Iwatsubo T (2008) Cytoplasmic localization and proteasomal degradation of N-terminally cleaved form of PINK1. Neurosci Lett 430(1):13–17CrossRefPubMedGoogle Scholar
  13. 13.
    Narendra DP et al (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8(1):e1000298CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Vives-Bauza C et al (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A 107(1):378–383ADSCrossRefPubMedGoogle Scholar
  15. 15.
    Geisler S et al (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12(2):119–131CrossRefPubMedGoogle Scholar
  16. 16.
    Birgisdottir AB, Lamark T, Johansen T (2013) The LIR motif—crucial for selective autophagy. J Cell Sci 126(Pt 15):3237–3247PubMedGoogle Scholar
  17. 17.
    Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12(9):823–830CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dolman NJ, Chambers KM, Mandavilli B, Batchelor RH, Janes MS (2013) Tools and techniques to measure mitophagy using fluorescence microscopy. Autophagy 9(11):1653–1662CrossRefPubMedGoogle Scholar
  19. 19.
    Kuma A, Matsui M, Mizushima N (2007) LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. Autophagy 3(4):323–328CrossRefPubMedGoogle Scholar
  20. 20.
    Katayama H, Kogure T, Mizushima N, Yoshimori T, Miyawaki A (2011) A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem Biol 18(8):1042–1052CrossRefPubMedGoogle Scholar
  21. 21.
    Miyazaki J et al (1990) Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127(1):126–132CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Cardiovascular Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan

Personalised recommendations