Skip to main content

Decellularization Methods for Scaffold Fabrication

  • Protocol
  • First Online:
Decellularized Scaffolds and Organogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1577))

  • The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/7651_2017_110

Abstract

Decellularization is the process of removal of native cells from tissue, leaving behind a three-dimensional (3D) ultrastructure of extracellular matrix (ECM) proteins while preserving the bioactivity and mechanics of the tissue. It offers a unique top-down approach for fabricating ECM based natural scaffold for tissue engineering application. Herein, this chapter presents the fabrication of decellularized scaffold employing different methods: whole organ perfusion, immersion and agitation, pressure gradient, and supercritical fluid. The decellularized scaffold aims to exploit the nature-designed 3D architecture, a successful platform technology, for creating scaffolding materials for tissue engineering and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Change history

  • 14 January 2018

    The publisher regrets that an author was not mentioned in the chapter by mistake. The details of the author are provided below:

    Archna Dhasmana – Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee, India

References

  1. Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27:3675–3683

    CAS  PubMed  Google Scholar 

  2. Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123:4195–4200

    Article  CAS  Google Scholar 

  3. Ketchedjian A, Jones AL, Krueger P et al (2005) Recellularization of decellularized allograft scaffolds in ovine great vessel reconstructions. Ann Thorac Surg 79:888–896, discussion 896

    Article  Google Scholar 

  4. Grauss RW, Hazekamp MG, van Vliet S et al (2003) Decellularization of rat aortic valve allografts reduces leaflet destruction and extracellular matrix remodeling. J Thorac Cardiovasc Surg 126:2003–2010

    Article  CAS  Google Scholar 

  5. Voytik-Harbin SL, Brightman AO, Kraine MR et al (1997) Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem 67:478–491

    Article  CAS  Google Scholar 

  6. Xu CC, Chan RW, Weinberger DG et al (2010) A bovine acellular scaffold for vocal fold reconstruction in a rat model. J Biomed Mater Res A 92:18–32

    Article  Google Scholar 

  7. Parekh A, Mantle B, Banks J et al (2009) Repair of the tympanic membrane with urinary bladder matrix. Laryngoscope 119:1206–1213

    Article  Google Scholar 

  8. Valentin JE, Turner NJ, Gilbert TW et al (2010) Functional skeletal muscle formation with a biologic scaffold. Biomaterials 31:7475–7484

    Article  CAS  Google Scholar 

  9. Cartmell JS, Dunn MG (2000) Effect of chemical treatments on tendon cellularity and mechanical properties. J Biomed Mater Res 49:134–140

    Article  CAS  Google Scholar 

  10. Schaner PJ, Martin ND, Tulenko TN et al (2004) Decellularized vein as a potential scaffold for vascular tissue engineering. J Vasc Surg 40:146–153

    Article  Google Scholar 

  11. Gonzalez-Andrades M, Carriel V, Rivera-Izquierdo M et al (2015) Effects of detergent-based protocols on decellularization of corneas with sclerocorneal limbus. Evaluation of regional differences. Transl Vis Sci Technol 4:13

    Article  Google Scholar 

  12. Meyer SR, Chiu B, Churchill TA et al (2006) Comparison of aortic valve allograft decellularization techniques in the rat. J Biomed Mater Res A 79:254–262

    Article  Google Scholar 

  13. Prasertsung I, Kanokpanont S, Bunaprasert T et al (2008) Development of acellular dermis from porcine skin using periodic pressurized technique. J Biomed Mater Res B Appl Biomater 85:210–219

    Article  Google Scholar 

  14. Brown BN, Freund JM, Han L et al (2011) Comparison of three methods for the derivation of a biologic scaffold composed of adipose tissue extracellular matrix. Tissue Eng Part C Methods 17:411–421

    Article  CAS  Google Scholar 

  15. Grauss RW, Hazekamp MG, Oppenhuizen F et al (2005) Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. Eur J Cardiothorac Surg 27:566–571

    Article  Google Scholar 

  16. Gonzalez-Andrades M, de la Cruz Cardona J, Ionescu AM et al (2011) Generation of bioengineered corneas with decellularized xenografts and human keratocytes. Invest Ophthalmol Vis Sci 52:215–222

    Article  CAS  Google Scholar 

  17. Huang M, Li N, Wu Z et al (2011) Using acellular porcine limbal stroma for rabbit limbal stem cell microenvironment reconstruction. Biomaterials 32:7812–7821

    Article  CAS  Google Scholar 

  18. Hou N, Cui P, Luo J et al (2011) Tissue-engineered larynx using perfusion-decellularized technique and mesenchymal stem cells in a rabbit model. Acta Otolaryngol 131:645–652

    Article  CAS  Google Scholar 

  19. Ott HC, Matthiesen TS, Goh SK et al (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14:213–221

    Article  CAS  Google Scholar 

  20. Petersen TH, Calle EA, Zhao L et al (2010) Tissue-engineered lungs for in vivo implantation. Science 329:538–541

    Article  CAS  Google Scholar 

  21. Ott HC, Clippinger B, Conrad C et al (2010) Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med 16:927–933

    Article  CAS  Google Scholar 

  22. Cortiella J, Niles J, Cantu A et al (2010) Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng Part A 16:2565–2580

    Article  CAS  Google Scholar 

  23. Price AP, England KA, Matson AM et al (2010) Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng Part A 16:2581–2591

    Article  CAS  Google Scholar 

  24. Caralt M, Uzarski JS, Iacob S et al (2015) Optimization and critical evaluation of decellularization strategies to develop renal extracellular matrix scaffolds as biological templates for organ engineering and transplantation. Am J Transplant 15:64–75

    Article  CAS  Google Scholar 

  25. Shupe T, Williams M, Brown A et al (2010) Method for the decellularization of intact rat liver. Organogenesis 6:134–136

    Article  Google Scholar 

  26. Uygun BE, Soto-Gutierrez A, Yagi H et al (2010) Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 16:814–820

    Article  CAS  Google Scholar 

  27. Henderson PW, Nagineni VV, Harper A et al (2010) Development of an acellular bioengineered matrix with a dominant vascular pedicle. J Surg Res 164:1–5

    Article  CAS  Google Scholar 

  28. Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32:3233–3243

    Article  CAS  Google Scholar 

  29. Tudorache I, Cebotari S, Sturz G et al (2007) Tissue engineering of heart valves: biomechanical and morphological properties of decellularized heart valves. J Heart Valve Dis 16:567–573, discussion 574

    PubMed  Google Scholar 

  30. Cebotari S, Tudorache I, Jaekel T et al (2010) Detergent decellularization of heart valves for tissue engineering: toxicological effects of residual detergents on human endothelial cells. Artif Organs 34:206–210

    Article  Google Scholar 

  31. Gui L, Chan SA, Breuer CK et al (2010) Novel utilization of serum in tissue decellularization. Tissue Eng Part C Methods 16:173–184

    Article  CAS  Google Scholar 

  32. Montoya CV, McFetridge PS (2009) Preparation of ex vivo-based biomaterials using convective flow decellularization. Tissue Eng Part C Methods 15:191–200

    Article  CAS  Google Scholar 

  33. Lehr EJ, Rayat GR, Chiu B et al (2011) Decellularization reduces immunogenicity of sheep pulmonary artery vascular patches. J Thorac Cardiovasc Surg 141:1056–1062

    Article  Google Scholar 

  34. Bolland F, Korossis S, Wilshaw SP et al (2007) Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering. Biomaterials 28:1061–1070

    Article  CAS  Google Scholar 

  35. Sawada K, Terada D, Yamaoka T et al (2008) Cell removal with supercritical carbon dioxide for acellular artificial tissue. J Chem Technol Biotechnol 83:943–949

    Article  CAS  Google Scholar 

  36. Keane TJ, Londono R, Turner NJ et al (2012) Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 33:1771–1781

    Article  CAS  Google Scholar 

  37. Zou Y, Zhang Y (2012) Mechanical evaluation of decellularized porcine thoracic aorta. J Surg Res 175:359–368

    Article  Google Scholar 

  38. Totonelli G, Maghsoudlou P, Garriboli M et al (2012) A rat decellularized small bowel scaffold that preserves villus-crypt architecture for intestinal regeneration. Biomaterials 33:3401–3410

    Article  CAS  Google Scholar 

  39. Wallis JM, Borg ZD, Daly AB et al (2012) Comparative assessment of detergent-based protocols for mouse lung de-cellularization and re-cellularization. Tissue Eng Part C Methods 18:420–432

    Article  CAS  Google Scholar 

  40. Struecker B, Hillebrandt KH, Voitl R et al (2014) Porcine liver decellularization under oscillating pressure conditions—a technical refinement to improve the homogeneity of the decellularization process. Tissue Eng Part C Methods 21(3):303–313

    Article  Google Scholar 

  41. Azhim A, Ono T, Fukui Y et al (2013) Preparation of decellularized meniscal scaffolds using sonication treatment for tissue engineering. Conf Proc IEEE Eng Med Biol Soc 2013:6953–6956

    CAS  PubMed  Google Scholar 

  42. Porzionato A, Sfriso MM, Macchi V et al (2013) Decellularized omentum as novel biologic scaffold for reconstructive surgery and regenerative medicine. Eur J Histochem e4:57

    Google Scholar 

  43. Latt SA, Wohlleb JC (1975) Optical studies of the interaction of 33258 Hoechst with DNA, chromatin, and metaphase chromosomes. Chromosoma 52:297–316

    Article  CAS  Google Scholar 

  44. Kakkar R, Suruchi GR (2005) Theoretical study of molecular recognition by Hoechst 33258 derivatives. J Biomol Struct Dyn 23:37–47

    Article  CAS  Google Scholar 

  45. Kral T, Widerak K, Langner M et al (2005) Propidium iodide and PicoGreen as dyes for the DNA fluorescence correlation spectroscopy measurements. J Fluoresc 15:179–183

    Article  CAS  Google Scholar 

  46. Jackson DW, Simon TM (2002) Donor cell survival and repopulation after intraarticular transplantation of tendon and ligament allografts. Microsc Res Tech 58:25–33

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Council of Scientific and Industrial Research (Grant No. 27(0222)/10/EM R-II dated 31.05.10), India, for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayan C. Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gupta, S.K., Mishra, N.C., Dhasmana, A. (2017). Decellularization Methods for Scaffold Fabrication. In: Turksen, K. (eds) Decellularized Scaffolds and Organogenesis. Methods in Molecular Biology, vol 1577. Humana Press, New York, NY. https://doi.org/10.1007/7651_2017_34

Download citation

  • DOI: https://doi.org/10.1007/7651_2017_34

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7655-3

  • Online ISBN: 978-1-4939-7656-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics