pp 1-10 | Cite as

Decellularization Methods for Scaffold Fabrication

  • Sweta K. Gupta
  • Narayan C. Mishra
  • Archna Dhasmana
Part of the Methods in Molecular Biology book series


Decellularization is the process of removal of native cells from tissue, leaving behind a three-dimensional (3D) ultrastructure of extracellular matrix (ECM) proteins while preserving the bioactivity and mechanics of the tissue. It offers a unique top-down approach for fabricating ECM based natural scaffold for tissue engineering application. Herein, this chapter presents the fabrication of decellularized scaffold employing different methods: whole organ perfusion, immersion and agitation, pressure gradient, and supercritical fluid. The decellularized scaffold aims to exploit the nature-designed 3D architecture, a successful platform technology, for creating scaffolding materials for tissue engineering and regenerative medicine.


Decellularization Scaffold Cells Extracellular matrix Tissue engineering 



The authors are thankful to the Council of Scientific and Industrial Research (Grant No. 27(0222)/10/EM R-II dated 31.05.10), India, for the financial support of this work.


  1. 1.
    Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27:3675–3683PubMedGoogle Scholar
  2. 2.
    Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123:4195–4200CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ketchedjian A, Jones AL, Krueger P et al (2005) Recellularization of decellularized allograft scaffolds in ovine great vessel reconstructions. Ann Thorac Surg 79:888–896, discussion 896CrossRefPubMedGoogle Scholar
  4. 4.
    Grauss RW, Hazekamp MG, van Vliet S et al (2003) Decellularization of rat aortic valve allografts reduces leaflet destruction and extracellular matrix remodeling. J Thorac Cardiovasc Surg 126:2003–2010CrossRefPubMedGoogle Scholar
  5. 5.
    Voytik-Harbin SL, Brightman AO, Kraine MR et al (1997) Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem 67:478–491CrossRefPubMedGoogle Scholar
  6. 6.
    Xu CC, Chan RW, Weinberger DG et al (2010) A bovine acellular scaffold for vocal fold reconstruction in a rat model. J Biomed Mater Res A 92:18–32CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Parekh A, Mantle B, Banks J et al (2009) Repair of the tympanic membrane with urinary bladder matrix. Laryngoscope 119:1206–1213CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Valentin JE, Turner NJ, Gilbert TW et al (2010) Functional skeletal muscle formation with a biologic scaffold. Biomaterials 31:7475–7484CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cartmell JS, Dunn MG (2000) Effect of chemical treatments on tendon cellularity and mechanical properties. J Biomed Mater Res 49:134–140CrossRefPubMedGoogle Scholar
  10. 10.
    Schaner PJ, Martin ND, Tulenko TN et al (2004) Decellularized vein as a potential scaffold for vascular tissue engineering. J Vasc Surg 40:146–153CrossRefPubMedGoogle Scholar
  11. 11.
    Gonzalez-Andrades M, Carriel V, Rivera-Izquierdo M et al (2015) Effects of detergent-based protocols on decellularization of corneas with sclerocorneal limbus. Evaluation of regional differences. Transl Vis Sci Technol 4:13CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Meyer SR, Chiu B, Churchill TA et al (2006) Comparison of aortic valve allograft decellularization techniques in the rat. J Biomed Mater Res A 79:254–262CrossRefPubMedGoogle Scholar
  13. 13.
    Prasertsung I, Kanokpanont S, Bunaprasert T et al (2008) Development of acellular dermis from porcine skin using periodic pressurized technique. J Biomed Mater Res B Appl Biomater 85:210–219CrossRefPubMedGoogle Scholar
  14. 14.
    Brown BN, Freund JM, Han L et al (2011) Comparison of three methods for the derivation of a biologic scaffold composed of adipose tissue extracellular matrix. Tissue Eng Part C Methods 17:411–421CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Grauss RW, Hazekamp MG, Oppenhuizen F et al (2005) Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. Eur J Cardiothorac Surg 27:566–571CrossRefPubMedGoogle Scholar
  16. 16.
    Gonzalez-Andrades M, de la Cruz Cardona J, Ionescu AM et al (2011) Generation of bioengineered corneas with decellularized xenografts and human keratocytes. Invest Ophthalmol Vis Sci 52:215–222CrossRefPubMedGoogle Scholar
  17. 17.
    Huang M, Li N, Wu Z et al (2011) Using acellular porcine limbal stroma for rabbit limbal stem cell microenvironment reconstruction. Biomaterials 32:7812–7821CrossRefPubMedGoogle Scholar
  18. 18.
    Hou N, Cui P, Luo J et al (2011) Tissue-engineered larynx using perfusion-decellularized technique and mesenchymal stem cells in a rabbit model. Acta Otolaryngol 131:645–652CrossRefPubMedGoogle Scholar
  19. 19.
    Ott HC, Matthiesen TS, Goh SK et al (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14:213–221CrossRefPubMedGoogle Scholar
  20. 20.
    Petersen TH, Calle EA, Zhao L et al (2010) Tissue-engineered lungs for in vivo implantation. Science 329:538–541ADSCrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ott HC, Clippinger B, Conrad C et al (2010) Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med 16:927–933CrossRefPubMedGoogle Scholar
  22. 22.
    Cortiella J, Niles J, Cantu A et al (2010) Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng Part A 16:2565–2580CrossRefPubMedGoogle Scholar
  23. 23.
    Price AP, England KA, Matson AM et al (2010) Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng Part A 16:2581–2591CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Caralt M, Uzarski JS, Iacob S et al (2015) Optimization and critical evaluation of decellularization strategies to develop renal extracellular matrix scaffolds as biological templates for organ engineering and transplantation. Am J Transplant 15:64–75CrossRefPubMedGoogle Scholar
  25. 25.
    Shupe T, Williams M, Brown A et al (2010) Method for the decellularization of intact rat liver. Organogenesis 6:134–136CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Uygun BE, Soto-Gutierrez A, Yagi H et al (2010) Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 16:814–820CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Henderson PW, Nagineni VV, Harper A et al (2010) Development of an acellular bioengineered matrix with a dominant vascular pedicle. J Surg Res 164:1–5CrossRefPubMedGoogle Scholar
  28. 28.
    Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32:3233–3243CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tudorache I, Cebotari S, Sturz G et al (2007) Tissue engineering of heart valves: biomechanical and morphological properties of decellularized heart valves. J Heart Valve Dis 16:567–573, discussion 574PubMedGoogle Scholar
  30. 30.
    Cebotari S, Tudorache I, Jaekel T et al (2010) Detergent decellularization of heart valves for tissue engineering: toxicological effects of residual detergents on human endothelial cells. Artif Organs 34:206–210CrossRefPubMedGoogle Scholar
  31. 31.
    Gui L, Chan SA, Breuer CK et al (2010) Novel utilization of serum in tissue decellularization. Tissue Eng Part C Methods 16:173–184CrossRefPubMedGoogle Scholar
  32. 32.
    Montoya CV, McFetridge PS (2009) Preparation of ex vivo-based biomaterials using convective flow decellularization. Tissue Eng Part C Methods 15:191–200CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lehr EJ, Rayat GR, Chiu B et al (2011) Decellularization reduces immunogenicity of sheep pulmonary artery vascular patches. J Thorac Cardiovasc Surg 141:1056–1062CrossRefPubMedGoogle Scholar
  34. 34.
    Bolland F, Korossis S, Wilshaw SP et al (2007) Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering. Biomaterials 28:1061–1070CrossRefPubMedGoogle Scholar
  35. 35.
    Sawada K, Terada D, Yamaoka T et al (2008) Cell removal with supercritical carbon dioxide for acellular artificial tissue. J Chem Technol Biotechnol 83:943–949CrossRefGoogle Scholar
  36. 36.
    Keane TJ, Londono R, Turner NJ et al (2012) Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 33:1771–1781CrossRefPubMedGoogle Scholar
  37. 37.
    Zou Y, Zhang Y (2012) Mechanical evaluation of decellularized porcine thoracic aorta. J Surg Res 175:359–368CrossRefPubMedGoogle Scholar
  38. 38.
    Totonelli G, Maghsoudlou P, Garriboli M et al (2012) A rat decellularized small bowel scaffold that preserves villus-crypt architecture for intestinal regeneration. Biomaterials 33:3401–3410CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wallis JM, Borg ZD, Daly AB et al (2012) Comparative assessment of detergent-based protocols for mouse lung de-cellularization and re-cellularization. Tissue Eng Part C Methods 18:420–432CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Struecker B, Hillebrandt KH, Voitl R et al (2014) Porcine liver decellularization under oscillating pressure conditions—a technical refinement to improve the homogeneity of the decellularization process. Tissue Eng Part C Methods 21(3):303–313CrossRefPubMedGoogle Scholar
  41. 41.
    Azhim A, Ono T, Fukui Y et al (2013) Preparation of decellularized meniscal scaffolds using sonication treatment for tissue engineering. Conf Proc IEEE Eng Med Biol Soc 2013:6953–6956PubMedGoogle Scholar
  42. 42.
    Porzionato A, Sfriso MM, Macchi V et al (2013) Decellularized omentum as novel biologic scaffold for reconstructive surgery and regenerative medicine. Eur J Histochem e4:57Google Scholar
  43. 43.
    Latt SA, Wohlleb JC (1975) Optical studies of the interaction of 33258 Hoechst with DNA, chromatin, and metaphase chromosomes. Chromosoma 52:297–316CrossRefPubMedGoogle Scholar
  44. 44.
    Kakkar R, Suruchi GR (2005) Theoretical study of molecular recognition by Hoechst 33258 derivatives. J Biomol Struct Dyn 23:37–47CrossRefPubMedGoogle Scholar
  45. 45.
    Kral T, Widerak K, Langner M et al (2005) Propidium iodide and PicoGreen as dyes for the DNA fluorescence correlation spectroscopy measurements. J Fluoresc 15:179–183CrossRefPubMedGoogle Scholar
  46. 46.
    Jackson DW, Simon TM (2002) Donor cell survival and repopulation after intraarticular transplantation of tendon and ligament allografts. Microsc Res Tech 58:25–33CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Sweta K. Gupta
    • 1
    • 2
  • Narayan C. Mishra
    • 1
  • Archna Dhasmana
    • 1
  1. 1.Department of Polymer and Process EngineeringIndian Institute of TechnologyRoorkeeIndia
  2. 2.Department of Chemical EngineeringUniversity of Rhode IslandKingstonUSA

Personalised recommendations