pp 1-7 | Cite as

Mouse Skeletal Muscle Decellularization

  • Martina Piccoli
  • Caterina Trevisan
  • Edoardo Maghin
  • Chiara Franzin
  • Michela Pozzobon
Part of the Methods in Molecular Biology book series


Natural acellular matrices obtained from decellularization procedures are biocompatible and non-immunogenic materials considered promising tools for regenerative medicine purposes. Before in vivo implantation, these matrices must be efficiently decellularized, removing all the cellular components to avoid any immunogenic reaction. At the same time, it is important to maintain the original three-dimensional structure of the specific tissue. Here we describe a method: (1) to decellularize mouse quadriceps using a detergent-enzymatic treatment (DET) and (2) to assess decellularization efficiency and scaffold properties.


Decellularization Extracellular matrix Mouse skeletal muscle Volumetric muscle loss Tissue engineering 



Piccoli M and Franzin C are supported by Istituto di Ricerca Pediatrica Città della Speranza, Grant Number 16/02; Trevisan C and Maghin E are supported by Istituto di Ricerca Pediatrica Città della Speranza. Pozzobon M is supported by University of Padova, Grant number GRIC15AIPF, Assegno di ricerca Senior. Franzin C, Piccoli M, and Pozzobon M are coinventors of Italian Patent N. 0001422436 entitled “Matrice acellulare per ricostruzione in vivo di muscolo scheletrico.”


  1. 1.
    Badylak SF (2004) Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol 12:367–377. doi: 10.1016/j.trim.2003.12.016 CrossRefPubMedGoogle Scholar
  2. 2.
    Daley WP, Peters SB, Larsen M (2008) Extracellular matrix dynamics in development and regenerative medicine. J Cell Sci 121:255–264. doi: 10.1242/jcs.006064 CrossRefPubMedGoogle Scholar
  3. 3.
    Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:27–53. doi: 10.1146/annurev-bioeng-071910-124743 CrossRefPubMedGoogle Scholar
  4. 4.
    Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27:3675–3683. doi: 10.1016/j.biomaterials.2006.02.014 PubMedGoogle Scholar
  5. 5.
    Piccoli M, Urbani L, Alvarez-Fallas ME, Franzin C, Dedja A, Bertin E, Zuccolotto G, Rosato A, Pavan P, Elvassore N, De Coppi P, Pozzobon M (2016) Improvement of diaphragmatic performance through orthotopic application of decellularized extracellular matrix patch. Biomaterials 74:245–255. doi: 10.1016/j.biomaterials.2015.10.005 CrossRefPubMedGoogle Scholar
  6. 6.
    Gillies AR, Smith LR, Lieber RL, Varghese S (2011) Method for decellularizing skeletal muscle without detergents or proteolytic enzymes. Tissue Eng Part C Methods 17:383–389. doi: 10.1089/ten.TEC.2010.0438 CrossRefPubMedGoogle Scholar
  7. 7.
    Kasukonis BM, Kim JT, Washington TA, Wolchok JC (2016) Development of an infusion bioreactor for the accelerated preparation of decellularized skeletal muscle scaffolds. Biotechnol Prog 32:745–755. doi: 10.1002/btpr.2257 CrossRefPubMedGoogle Scholar
  8. 8.
    Fishman JM, Lowdell MW, Urbani L, Ansari T, Burns AJ, Turmaine M, North J, Sibbons P, Seifalian AM, Wood KJ, Birchall MA, De Coppi P (2013) Immunomodulatory effect of a decellularized skeletal muscle scaffold in a discordant xenotransplantation model. Proc Natl Acad Sci U S A 110:14360–14365. doi: 10.1073/pnas.1213228110 ADSCrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Elliott MJ, De Coppi P, Speggiorin S, Roebuck D, Butler CR, Samuel E, Crowley C, McLaren C, Fierens A, Vondrys D, Cochrane L, Jephson C, Janes S, Beaumont NJ, Cogan T, Bader A, Seifalian AM, Hsuan JJ, Lowdell MW, Birchall MA (2012) Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. Lancet 380:994–1000. doi: 10.1016/S0140-6736(12)60737-5 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, Dodson A, Martorell J, Bellini S, Parnigotto PP, Dickinson SC, Hollander AP, Mantero S, Conconi MT, Birchall MA (2008) Clinical transplantation of a tissue-engineered airway. Lancet 372:2023–2030. doi: 10.1016/S0140-6736(08)61598-6 CrossRefPubMedGoogle Scholar
  11. 11.
    Wainwright DJ (1995) Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns 21:243–248CrossRefPubMedGoogle Scholar
  12. 12.
    Sicari BM, Agrawal V, Siu BF, Medberry CJ, Dearth CL, Turner NJ, Badylak SF (2012) A murine model of volumetric muscle loss and a regenerative medicine approach for tissue replacement. Tissue Eng Part A 18:1941–1948. doi: 10.1089/ten.TEA.2012.0475 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sicari BM, Rubin JP, Dearth CL, Wolf MT, Ambrosio F, Boninger M, Turner NJ, Weber DJ, Simpson TW, Wyse A, Brown EH, Dziki JL, Fisher LE, Brown S, Badylak SF (2014) An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci Transl Med 6:234ra258. doi: 10.1126/scitranslmed.3008085 CrossRefGoogle Scholar
  14. 14.
    Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32:3233–3243. doi: 10.1016/j.biomaterials.2011.01.057 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Martina Piccoli
    • 1
  • Caterina Trevisan
    • 1
    • 2
  • Edoardo Maghin
    • 1
  • Chiara Franzin
    • 1
  • Michela Pozzobon
    • 1
    • 2
    • 3
  1. 1.Fondazione Istituto di Ricerca Pediatrica Città della SperanzaPadovaItaly
  2. 2.Department of Women and Children HealthUniversity of PadovaPadovaItaly
  3. 3.Stem Cells and Regenerative Medicine LabIstituto di Ricerca Pediatrica Città della SperanzaPadovaItaly

Personalised recommendations