pp 1-17 | Cite as

S1P Synergizes with Wall Shear Stress and Other Angiogenic Factors to Induce Endothelial Cell Sprouting Responses

  • Camille L. Duran
  • Roland Kaunas
  • Kayla J. Bayless
Protocol
Part of the Methods in Molecular Biology book series

Abstract

Angiogenesis is the process of new blood vessel growth from pre-existing structures. During sprout initiation, endothelial cells (ECs) are activated by pro-angiogenic factors to degrade the basement membrane, migrate into the surrounding matrix, and form structures that anastomose to connect neighboring vessels. Sphingosine 1-phosphate (S1P) is a biologically active lysosphingolipid that is secreted by platelets and promotes angiogenesis under normal and pathological conditions by acting on ECs. In addition to biochemical factors, the endothelium is continuously subjected to mechanical forces in the form of wall shear stress (WSS) from fluid forces. Here, we describe an in vitro, three-dimensional (3D) endothelial sprouting assay that is significantly enhanced by S1P, WSS, angiogenic growth factors (GFs), and fibronectin. This assay is assembled by seeding primary human endothelial cells onto 3D collagen matrices containing S1P and other pro-angiogenic factors. Once attached, physiological levels of WSS are applied to induce robust sprouting responses. This approach promotes the initiation of angiogenic sprouts stimulated by S1P, and allows the study of 3D sprouting of primary human endothelial cells induced in response to these physiological factors.

Keywords

3D Collagen Endothelial cell Invasion Sphingosine 1-phosphate Sprouting Wall shear stress 

References

  1. 1.
    Chappell JC, Wiley DM, Bautch VL (2012) How blood vessel networks are made and measured. Cells Tissues Organs 195(1–2):94–107. doi:10.1159/000331398 CrossRefPubMedGoogle Scholar
  2. 2.
    Simons M, Alitalo K, Annex BH, Augustin HG, Beam C, Berk BC, Byzova T, Carmeliet P, Chilian W, Cooke JP, Davis GE, Eichmann A, Iruela-Arispe ML, Keshet E, Sinusas AJ, Ruhrberg C, Woo YJ, Dimmeler S, American Heart Association Council on Basic Cardiovascular Sciences, Council on Cardiovascular Surgery and Anesthesia (2015) State-of-the-art methods for evaluation of angiogenesis and tissue vascularization: a scientific statement from the American Heart Association. Circ Res 116(11):e99–132. doi:10.1161/RES.0000000000000054 CrossRefPubMedGoogle Scholar
  3. 3.
    Spiegel S, Milstien S (2003) Exogenous and intracellularly generated sphingosine 1-phosphate can regulate cellular processes by divergent pathways. Biochem Soc Trans 31(Pt 6):1216–1219CrossRefPubMedGoogle Scholar
  4. 4.
    Pyne S, Pyne NJ (2000) Sphingosine 1-phosphate signalling in mammalian cells. Biochem J 349(Pt 2):385–402CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yatomi Y, Ruan F, Hakomori S, Igarashi Y (1995) Sphingosine-1-phosphate: a platelet-activating sphingolipid released from agonist-stimulated human platelets. Blood 86(1):193–202PubMedGoogle Scholar
  6. 6.
    Yatomi Y, Yamamura S, Ruan F, Igarashi Y (1997) Sphingosine 1-phosphate induces platelet activation through an extracellular action and shares a platelet surface receptor with lysophosphatidic acid. J Biol Chem 272(8):5291–5297CrossRefPubMedGoogle Scholar
  7. 7.
    Yatomi Y, Igarashi Y, Yang L, Hisano N, Qi R, Asazuma N, Satoh K, Ozaki Y, Kume S (1997) Sphingosine 1-phosphate, a bioactive sphingolipid abundantly stored in platelets, is a normal constituent of human plasma and serum. J Biochem 121(5):969–973CrossRefPubMedGoogle Scholar
  8. 8.
    Murata N, Sato K, Kon J, Tomura H, Okajima F (2000) Quantitative measurement of sphingosine 1-phosphate by radioreceptor-binding assay. Anal Biochem 282(1):115–120. doi:10.1006/abio.2000.4580 CrossRefPubMedGoogle Scholar
  9. 9.
    Edsall LC, Spiegel S (1999) Enzymatic measurement of sphingosine 1-phosphate. Anal Biochem 272(1):80–86. doi:10.1006/abio.1999.4157 CrossRefPubMedGoogle Scholar
  10. 10.
    English D, Welch Z, Kovala AT, Harvey K, Volpert OV, Brindley DN, Garcia JG (2000) Sphingosine 1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis. FASEB J 14(14):2255–2265. doi:10.1096/fj.00-0134com CrossRefPubMedGoogle Scholar
  11. 11.
    Kluk MJ, Hla T (2002) Signaling of sphingosine-1-phosphate via the S1P/EDG-family of G-protein-coupled receptors. Biochim Biophys Acta 1582(1–3):72–80CrossRefPubMedGoogle Scholar
  12. 12.
    Hla T, Maciag T (1990) An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors. J Biol Chem 265(16):9308–9313PubMedGoogle Scholar
  13. 13.
    McGiffert C, Contos JJ, Friedman B, Chun J (2002) Embryonic brain expression analysis of lysophospholipid receptor genes suggests roles for s1p(1) in neurogenesis and s1p(1-3) in angiogenesis. FEBS Lett 531(1):103–108CrossRefPubMedGoogle Scholar
  14. 14.
    Lee MJ, Van Brocklyn JR, Thangada S, Liu CH, Hand AR, Menzeleev R, Spiegel S, Hla T (1998) Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279(5356):1552–1555ADSCrossRefPubMedGoogle Scholar
  15. 15.
    Lee M-J, Thangada S, Claffey KP, Ancellin N, Liu CH, Kluk M, Volpi M, Sha’afi RI, Hla T (1999) Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell 99(3):301–312. doi:10.1016/s0092-8674(00)81661-x CrossRefPubMedGoogle Scholar
  16. 16.
    Garcia JG, Liu F, Verin AD, Birukova A, Dechert MA, Gerthoffer WT, Bamberg JR, English D (2001) Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J Clin Invest 108(5):689–701. doi:10.1172/JCI12450 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lee OH, Kim YM, Lee YM, Moon EJ, Lee DJ, Kim JH, Kim KW, Kwon YG (1999) Sphingosine 1-phosphate induces angiogenesis: its angiogenic action and signaling mechanism in human umbilical vein endothelial cells. Biochem Biophys Res Commun 264(3):743–750. doi:10.1006/bbrc.1999.1586 CrossRefPubMedGoogle Scholar
  18. 18.
    Argraves KM, Wilkerson BA, Argraves WS, Fleming PA, Obeid LM, Drake CJ (2004) Sphingosine-1-phosphate signaling promotes critical migratory events in vasculogenesis. J Biol Chem 279(48):50580–50590. doi:10.1074/jbc.M404432200 CrossRefPubMedGoogle Scholar
  19. 19.
    Kono M, Mi Y, Liu Y, Sasaki T, Allende ML, Wu YP, Yamashita T, Proia RL (2004) The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J Biol Chem 279(28):29367–29373. doi:10.1074/jbc.M403937200 CrossRefPubMedGoogle Scholar
  20. 20.
    Kaneko-Tarui T, Zhang L, Austin KJ, Henkes LE, Johnson J, Hansen TR, Pru JK (2007) Maternal and embryonic control of uterine sphingolipid-metabolizing enzymes during murine embryo implantation. Biol Reprod 77(4):658–665. doi:10.1095/biolreprod.107.061044 CrossRefPubMedGoogle Scholar
  21. 21.
    Mizugishi K, Li C, Olivera A, Bielawski J, Bielawska A, Deng CX, Proia RL (2007) Maternal disturbance in activated sphingolipid metabolism causes pregnancy loss in mice. J Clin Invest 117(10):2993–3006. doi:10.1172/JCI30674 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chae SS, Paik JH, Allende ML, Proia RL, Hla T (2004) Regulation of limb development by the sphingosine 1-phosphate receptor S1p1/EDG-1 occurs via the hypoxia/VEGF axis. Dev Biol 268(2):441–447. doi:10.1016/j.ydbio.2004.01.001 CrossRefPubMedGoogle Scholar
  23. 23.
    Chae SS, Paik JH, Furneaux H, Hla T (2004) Requirement for sphingosine 1-phosphate receptor-1 in tumor angiogenesis demonstrated by in vivo RNA interference. J Clin Invest 114(8):1082–1089. doi:10.1172/JCI22716 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Estrada R, Zeng Q, Lu H, Sarojini H, Lee JF, Mathis SP, Sanchez T, Wang E, Kontos CD, Lin CY, Hla T, Haribabu B, Lee MJ (2008) Up-regulating sphingosine 1-phosphate receptor-2 signaling impairs chemotactic, wound-healing, and morphogenetic responses in senescent endothelial cells. J Biol Chem 283(44):30363–30375. doi:10.1074/jbc.M804392200 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Okamoto H, Takuwa N, Yokomizo T, Sugimoto N, Sakurada S, Shigematsu H, Takuwa Y (2000) Inhibitory regulation of Rac activation, membrane ruffling, and cell migration by the G protein-coupled sphingosine-1-phosphate receptor EDG5 but not EDG1 or EDG3. Mol Cell Biol 20(24):9247–9261CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ryu Y, Takuwa N, Sugimoto N, Sakurada S, Usui S, Okamoto H, Matsui O, Takuwa Y (2002) Sphingosine-1-phosphate, a platelet-derived lysophospholipid mediator, negatively regulates cellular Rac activity and cell migration in vascular smooth muscle cells. Circ Res 90(3):325–332CrossRefPubMedGoogle Scholar
  27. 27.
    Liu Y, Wada R, Yamashita T, Mi Y, Deng CX, Hobson JP, Rosenfeldt HM, Nava VE, Chae SS, Lee MJ, Liu CH, Hla T, Spiegel S, Proia RL (2000) Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest 106(8):951–961CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gaengel K, Niaudet C, Hagikura K, Lavina B, Muhl L, Hofmann JJ, Ebarasi L, Nystrom S, Rymo S, Chen LL, Pang MF, Jin Y, Raschperger E, Roswall P, Schulte D, Benedito R, Larsson J, Hellstrom M, Fuxe J, Uhlen P, Adams R, Jakobsson L, Majumdar A, Vestweber D, Uv A, Betsholtz C (2012) The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2. Dev Cell 23(3):587–599. doi:10.1016/j.devcel.2012.08.005 CrossRefPubMedGoogle Scholar
  29. 29.
    Ben Shoham A, Malkinson G, Krief S, Shwartz Y, Ely Y, Ferrara N, Yaniv K, Zelzer E (2012) S1P1 inhibits sprouting angiogenesis during vascular development. Development 139(20):3859–3869. doi:10.1242/dev.078550 CrossRefPubMedGoogle Scholar
  30. 30.
    Jung B, Obinata H, Galvani S, Mendelson K, Ding BS, Skoura A, Kinzel B, Brinkmann V, Rafii S, Evans T, Hla T (2012) Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development. Dev Cell 23(3):600–610. doi:10.1016/j.devcel.2012.07.015 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bayless K, Kwak H-I, Su S-C (2009) Investigating endothelial invasion and sprouting behavior in three-dimensional collagen matrices. Nat Protoc 4(12):1888–1898. doi:10.1038/nprot.2009.221 CrossRefPubMedGoogle Scholar
  32. 32.
    Bayless KJ, Davis GE (2003) Sphingosine-1-phosphate markedly induces matrix metalloproteinase and integrin-dependent human endothelial cell invasion and lumen formation in three-dimensional collagen and fibrin matrices. Biochem Biophys Res Commun 312(4):903–913. http://dx.doi.org/10.1016/j.bbrc.2003.11.017CrossRefPubMedGoogle Scholar
  33. 33.
    Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439ADSCrossRefPubMedGoogle Scholar
  34. 34.
    Jakeman L, Armanini M, Phillips H, Ferrara N (1993) Developmental expression of binding sites and messenger ribonucleic acid for vascular endothelial growth factor suggests a role for this protein in vasculogenesis and angiogenesis. Endocrinology 133(2):848–859. doi:10.1210/endo.133.2.7688292 PubMedGoogle Scholar
  35. 35.
    Pownall ME, Isaacs HV (2010) FGF signalling in vertebrate development. Colloq Ser Dev Biol 1(1):1–75. doi:10.4199/C00011ED1V01Y201004DEB002 CrossRefGoogle Scholar
  36. 36.
    Shweiki D, Itin A, Neufeld G, Gitay-Goren H, Keshet E (1993) Patterns of expression of vascular endothelial growth factor (VEGF) and VEGF receptors in mice suggest a role in hormonally regulated angiogenesis. J Clin Investig 91(5):2235–2243CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Beck L Jr, D'Amore PA (1997) Vascular development: cellular and molecular regulation. FASEB J 11(5):365–373PubMedGoogle Scholar
  38. 38.
    Gospodarowicz D, Cheng J, Lui GM, Baird A, Böhlent P (1984) Isolation of brain fibroblast growth factor by heparin-Sepharose affinity chromatography: identity with pituitary fibroblast growth factor. Proc Natl Acad Sci 81(22):6963–6967ADSCrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P (1998) Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141(7):1659–1673CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kang H, Bayless KJ, Kaunas R (2008) Fluid shear stress modulates endothelial cell invasion into three-dimensional collagen matrices. Am J Phys Heart Circ Phys 295(5):H2087–H2097. doi:10.1152/ajpheart.00281.2008 Google Scholar
  41. 41.
    Nicosia RF, Bonanno E, Smith M (1993) Fibronectin promotes the elongation of microvessels during angiogenesis in vitro. J Cell Physiol 154(3):654–661. doi:10.1002/jcp.1041540325 CrossRefPubMedGoogle Scholar
  42. 42.
    Clark ER, Nitschler WJ, Kirby-Smith HT, Rex RO, Smith JH (1931) General observations on the ingrowth of new blood vessels into standardized chambers in the rabbit’s ear, and the subsequent changes in the newly grown vessels over a period of months. Anat Rec 50:129–168CrossRefGoogle Scholar
  43. 43.
    Ichioka S, Shibata M, Kosaki K, Sato Y, Harii K, Kamiya A (1997) Effects of shear stress on wound-healing angiogenesis in the rabbit ear chamber. J Surg Res 72(1):29–35. doi:10.1006/jsre.1997.5170 CrossRefPubMedGoogle Scholar
  44. 44.
    Kim MB, Sarelius IH (2003) Distributions of wall shear stress in venular convergences of mouse cremaster muscle. Microcirculation 10(2):167–178. doi:10.1038/sj.mn.7800182 CrossRefPubMedGoogle Scholar
  45. 45.
    Koutsiaris AG, Tachmitzi SV, Batis N, Kotoula MG, Karabatsas CH, Tsironi E, Chatzoulis DZ (2007) Volume flow and wall shear stress quantification in the human conjunctival capillaries and post-capillary venules in vivo. Biorheology 44(5–6):375–386PubMedGoogle Scholar
  46. 46.
    Zhou A, Egginton S, Hudlicka O, Brown MD (1998) Internal division of capillaries in rat skeletal muscle in response to chronic vasodilator treatment with alpha1-antagonist prazosin. Cell Tissue Res 293(2):293–303CrossRefPubMedGoogle Scholar
  47. 47.
    Lucitti JL, Jones EA, Huang C, Chen J, Fraser SE, Dickinson ME (2007) Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development 134(18):3317–3326. doi:10.1242/dev.02883 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Dave JM, Abbey CA, Duran CL, Seo H, Johnson GA, Bayless KJ (2016) Hic-5 mediates the initiation of endothelial sprouting by regulating a key surface metalloproteinase. J Cell Sci 129(4):743–756. doi:10.1242/jcs.170571 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Su SC, Maxwell SA, Bayless KJ (2010) Annexin 2 regulates endothelial morphogenesis by controlling AKT activation and junctional integrity. J Biol Chem 285(52):40624–40634. doi:10.1074/jbc.M110.157271 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kang H, Duran CL, Abbey CA, Kaunas RR, Bayless KJ (2015) Fluid shear stress promotes proprotein convertase-dependent activation of MT1-MMP. Biochem Biophys Res Commun 460(3):596–602. doi:10.1016/j.bbrc.2015.03.075 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kang H, Kwak HI, Kaunas R, Bayless KJ (2011) Fluid shear stress and sphingosine 1-phosphate activate calpain to promote membrane type 1 matrix metalloproteinase (MT1-MMP) membrane translocation and endothelial invasion into three-dimensional collagen matrices. J Biol Chem 286(49):42017–42026. doi:10.1074/jbc.M111.290841 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Dave JM, Kang H, Abbey CA, Maxwell SA, Bayless KJ (2013) Proteomic profiling of endothelial invasion revealed receptor for activated C kinase 1 (RACK1) complexed with vimentin to regulate focal adhesion kinase (FAK). J Biol Chem 288(42):30720–30733. doi:10.1074/jbc.M113.512467 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kwak HI, Kang H, Dave JM, Mendoza EA, Su SC, Maxwell SA, Bayless KJ (2012) Calpain-mediated vimentin cleavage occurs upstream of MT1-MMP membrane translocation to facilitate endothelial sprout initiation. Angiogenesis 15(2):287–303. doi:10.1007/s10456-012-9262-4 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Maciag T, Cerundolo J, Ilsley S, Kelley PR, Forand R (1979) An endothelial cell growth factor from bovine hypothalamus: identification and partial characterization. Proc Natl Acad Sci U S A 76(11):5674–5678ADSCrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Rajan N, Habermehl J, Cote MF, Doillon CJ, Mantovani D (2006) Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nat Protoc 1(6):2753–2758. doi:10.1038/nprot.2006.430 CrossRefPubMedGoogle Scholar
  56. 56.
    Bornstein MB (1958) Reconstituted rattail collagen used as substrate for tissue cultures on coverslips in Maximow slides and roller tubes. Lab Invest 7(2):134–137MathSciNetPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Camille L. Duran
    • 1
  • Roland Kaunas
    • 2
  • Kayla J. Bayless
    • 1
  1. 1.Department of Molecular and Cellular MedicineTexas A&M University Health Science CenterCollege StationUSA
  2. 2.Department of Biomedical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations