Skip to main content
Book cover

Organoids pp 215–228Cite as

Intestinal Crypt Organoid: Isolation of Intestinal Stem Cells, In Vitro Culture, and Optical Observation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1576))

Abstract

The isolation and culture of intestinal stem cells (ISCs) was first demonstrated in the very recent decade with the identification of ISC marker Lgr5. The growth of ISCs into crypt organoids provides an in vitro model for studying the mucosal physiology, intestinal cancer tumorigenesis, and intestinal regeneration. Here, we describe two different isolation protocols and demonstrate a fixation method that aids in the confocal observation of the organoids.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kuntz S, Rudloff S, Kunz C (2008) Oligosaccharides from human milk influence growth-related characteristics of intestinally transformed and non-transformed intestinal cells. Br J Nutr 99(3):462–471. doi:https://doi.org/10.1017/S0007114507824068

    Article  CAS  PubMed  Google Scholar 

  2. Escaffit F, Perreault N, Jean D, Francoeur C, Herring E, Rancourt C, Rivard N, Vachon PH, Pare F, Boucher MP, Auclair J, Beaulieu JF (2005) Repressed E-cadherin expression in the lower crypt of human small intestine: a cell marker of functional relevance. Exp Cell Res 302(2):206–220. doi:https://doi.org/10.1016/j.yexcr.2004.08.033

    Article  CAS  PubMed  Google Scholar 

  3. Francoeur C, Escaffit F, Vachon PH, Beaulieu JF (2004) Proinflammatory cytokines TNF-alpha and IFN-gamma alter laminin expression under an apoptosis-independent mechanism in human intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 287(3):G592–G598. doi:https://doi.org/10.1152/ajpgi.00535.2003

    Article  CAS  PubMed  Google Scholar 

  4. Ruemmele FM, Beaulieu JF, Dionne S, Levy E, Seidman EG, Cerf-Bensussan N, Lentze MJ (2002) Lipopolysaccharide modulation of normal enterocyte turnover by toll-like receptors is mediated by endogenously produced tumour necrosis factor alpha. Gut 51(6):842–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003–1007

    Article  CAS  PubMed  Google Scholar 

  6. Rouch JD, Scott A, Lei NY, Solorzano-Vargas RS, Wang J, Hanson EM, Kobayashi M, Lewis M, Stelzner MG, Dunn JC, Eckmann L, Martin MG (2016) Development of functional microfold (M) cells from intestinal stem cells in primary human enteroids. PLoS One 11(1):e0148216. doi:https://doi.org/10.1371/journal.pone.0148216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mohamed MS, Chen Y, Yao CL (2015) Intestinal stem cells and stem cell-based therapy for intestinal diseases. Cytotechnology 67(2):177–189. doi:https://doi.org/10.1007/s10616-014-9753-9

    Article  CAS  PubMed  Google Scholar 

  8. Barthel ER, Speer AL, Levin DE, Sala FG, Hou X, Torashima Y, Wigfall CM, Grikscheit TC (2012) Tissue engineering of the intestine in a murine model. J Vis Exp 70:e4279. doi:https://doi.org/10.3791/4279

    Article  CAS  Google Scholar 

  9. Kuo WT, Lee TC, Yang HY, Chen CY, Au YC, Lu YZ, Wu LL, Wei SC, Ni YH, Lin BR, Chen Y, Tsai YH, Kung JT, Sheu F, Lin LW, Yu LC (2015) LPS receptor subunits have antagonistic roles in epithelial apoptosis and colonic carcinogenesis. Cell Death Differ 22(10):1590–1604. doi:https://doi.org/10.1038/cdd.2014.240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265

    Article  CAS  PubMed  Google Scholar 

  11. Sato T, Clevers H (2013) Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340(6137):1190–1194. doi:https://doi.org/10.1126/science.1234852

    Article  CAS  PubMed  Google Scholar 

  12. Chen Y, Lee SH, Tsai YH, Tseng SH (2014) Ischemic preconditioning increased the intestinal stem cell activities in the intestinal crypts in mice. J Surg Res 187(1):85–93. doi:https://doi.org/10.1016/j.jss.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  13. Chen Y, Tsai YH, Liu YA, Lee SH, Tseng SH, Tang SC (2013) Application of three-dimensional imaging to the intestinal crypt organoids and biopsied intestinal tissues. ScientificWorldJournal 2013:624342. doi:https://doi.org/10.1155/2013/624342

    Article  PubMed  PubMed Central  Google Scholar 

  14. Esposito G, Sarnelli G, Capoccia E, Cirillo C, Pesce M, Lu J, Cali G, Cuomo R, Steardo L (2016) Autologous transplantation of intestine-isolated glia cells improves neuropathology and restores cognitive deficits in beta amyloid-induced neurodegeneration. Sci Rep 6:22605. doi:https://doi.org/10.1038/srep22605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM, Jaenisch R (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318(5858):1920–1923. doi:https://doi.org/10.1126/science.1152092

    Article  CAS  PubMed  Google Scholar 

  16. Levin DE, Sala FG, Barthel ER, Speer AL, Hou X, Torashima Y, Grikscheit TC (2013) A "living bioreactor" for the production of tissue-engineered small intestine. Methods Mol Biol 1001:299–309. doi:https://doi.org/10.1007/978-1-62703-363-3_25

    Article  CAS  PubMed  Google Scholar 

  17. Sala FG, Matthews JA, Speer AL, Torashima Y, Barthel ER, Grikscheit TC (2011) A multicellular approach forms a significant amount of tissue-engineered small intestine in the mouse. Tissue Eng Part A 17(13–14):1841–1850. doi:https://doi.org/10.1089/ten.TEA.2010.0564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Levin DE, Barthel ER, Speer AL, Sala FG, Hou X, Torashima Y, Grikscheit TC (2013) Human tissue-engineered small intestine forms from postnatal progenitor cells. J Pediatr Surg 48(1):129–137. doi:https://doi.org/10.1016/j.jpedsurg.2012.10.029

    Article  PubMed  Google Scholar 

  19. Choi RS, Riegler M, Pothoulakis C, Kim BS, Mooney D, Vacanti M, Vacanti JP (1998) Studies of brush border enzymes, basement membrane components, and electrophysiology of tissue-engineered neointestine. J Pediatr Surg 33(7):991–996. discussion 996-997

    Article  CAS  PubMed  Google Scholar 

  20. Grant CN, Mojica SG, Sala FG, Hill JR, Levin DE, Speer AL, Barthel ER, Shimada H, Zachos NC, Grikscheit TC (2015) Human and mouse tissue-engineered small intestine both demonstrate digestive and absorptive function. Am J Physiol Gastrointest Liver Physiol 308(8):G664–G677. doi:https://doi.org/10.1152/ajpgi.00111.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya-Hui Tsai or Sheng-Hong Tseng .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

3-D reconstruction for the organoids. The organoids were stained with DAPI and the fluorescence signals were imaged by confocal microscopy under the 40× oil objective. The Z-stacked images were processed and reconstructed by Zen software (Carl Zeiss). This video covered part of the organoid with seven visible crypt-like domains (AVI 2061 kb)

3-D reconstruction for the organoids. The organoids were stained with DAPI and the fluorescence signals were imaged by confocal microscopy under the 63× oil objective. The Z-stacked images were processed and reconstructed by Zen software (Carl Zeiss). This video covered only one crypt-like domain of an organoid (AVI 2440 kb)

Video 3

The growth of ISC into crypt organoids. The images were captured every 8 h on the first day and every 24 h afterward for 20 days. The images were captured and recorded by AZTEC CCM-1.4 II/M. The scale bar in the video represents 100 μm (AVI 31107 kb)

Video 4

The growth of organoids after passage. The images were captured every 24 h after passage for 9 days. The images were captured and recorded by AZTEC CCM-1.4 II/M. The scale bar in the video represents 100 μm (AVI 12728 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chen, Y., Li, C., Tsai, YH., Tseng, SH. (2017). Intestinal Crypt Organoid: Isolation of Intestinal Stem Cells, In Vitro Culture, and Optical Observation. In: Turksen, K. (eds) Organoids. Methods in Molecular Biology, vol 1576. Humana, New York, NY. https://doi.org/10.1007/7651_2017_21

Download citation

  • DOI: https://doi.org/10.1007/7651_2017_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-7616-4

  • Online ISBN: 978-1-4939-7617-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics