pp 1-11 | Cite as

Exploring MicroRNAs on NIX-Dependent Mitophagy

  • Wen Li
  • Hao Chen
  • Shupeng Li
  • Guanghong Lin
  • Du Feng
Protocol
Part of the Methods in Molecular Biology book series

Abstract

The dysregulation of autophagy is implicated in many pathological disorders including infections, aging, neurodegenerative diseases, and cancer. Autophagy can be precisely controlled both transcriptionally and translationally. Accumulating evidences show that the autophagy response is regulated by microRNAs, which therefore becomes subject area of interest in recent years. Herein, we give a brief introduction of the recent advancement in the regulation of microRNA on autophagy, and then we focus on the microRNA regulation of the mitophagy receptor, NIX. Finally, we present the methodology on how to study it in detail.

Keywords:

MicroRNAs NIX BNIP3L Autophagy Mitophagy LC3 

Notes

Acknowledgement

This work was supported by NSFC (No. 31401182), by the National Basic Research Program of China (2013CB910100), by the Natural Science Foundation of Guangdong Province, China (2014A030313533), by Yangfan Plan of Talents Recruitment Grant, Guangdong, China (Yue Cai Jiao [2015] 216, 4YF14007G), by the Science and Technology Planning Project, Guangdong, China (No. 2016A020215152), by Guangdong Medical Research Foundation (A2015332), and by Research Fund of Guangdong Medical University (M2014024, M2015001).

References

  1. 1.
    Aoki Y, Kanki T, Hirota Y, Kurihara Y, Saigusa T, Uchiumi T, Kang D (2011) Phosphorylation of Serine 114 on Atg32 mediates mitophagy. Mol Biol Cell 22(17):3206–3217CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Barde I, Rauwel B, Marin-Florez RM, Corsinotti A, Laurenti E, Verp S, Offner S, Marquis J, Kapopoulou A, Vanicek J, Trono D (2013) A KRAB/KAP1-miRNA cascade regulates erythropoiesis through stage-specific control of mitophagy. Science 340(6130):350–353ADSCrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Basak I, Patil KS, Alves G, Larsen JP, Moller SG (2016) microRNAs as neuroregulators, biomarkers and therapeutic agents in neurodegenerative diseases. Cell Mol Life Sci 73(4):811–827CrossRefPubMedGoogle Scholar
  5. 5.
    Ding WX, Ni HM, Li M, Liao Y, Chen X, Stolz DB, Dorn GW 2nd, Yin XM (2010) NIX is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. J Biol Chem 285(36):27879–27890CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Dwivedi SK, Mustafi SB, Mangala LS, Jiang D, Pradeep S, Rodriguez-Aguayo C, Ling H, Ivan C, Mukherjee P, Calin GA, Lopez-Berestein G, Sood AK, Bhattacharya R (2016) Therapeutic evaluation of microRNA-15a and microRNA-16 in ovarian cancer. Oncotarget 7(12):15093PubMedGoogle Scholar
  7. 7.
    Elmore SP, Qian T, Grissom SF, Lemasters JJ (2001) The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J 15(12):2286–2287PubMedGoogle Scholar
  8. 8.
    Gomes BC, Rueff J, Rodrigues AS (2016) MicroRNAs and Cancer Drug Resistance. Methods Mol Biol 1395:137–162CrossRefPubMedGoogle Scholar
  9. 9.
    Gunaratne PH, Creighton CJ, Watson M, Tennakoon JB (2010) Large-scale integration of MicroRNA and gene expression data for identification of enriched microRNA-mRNA associations in biological systems. Methods Mol Biol 667:297–315CrossRefPubMedGoogle Scholar
  10. 10.
    Li W, Zhang X, Zhuang H, Chen HG, Chen Y, Tian W, Wu W, Li Y, Wang S, Zhang L, Chen Y, Li L, Zhao B, Sui S, Hu Z, Feng D (2014) MicroRNA-137 is a novel hypoxia-responsive microRNA that inhibits mitophagy via regulation of two mitophagy receptors FUNDC1 and NIX. J Biol Chem 289(15):10691–10701CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lin SL, Chang DC, Lin CH, Ying SY, Leu D, Wu DT (2011) Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Res 39(3):1054–1065CrossRefPubMedGoogle Scholar
  12. 12.
    Liu H (2012) MicroRNAs in breast cancer initiation and progression. Cell Mol Life Sci 69(21):3587–3599CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C, Wang R, Qi W, Huang L, Xue P, Li B, Wang X, Jin H, Wang J, Yang F, Liu P, Zhu Y, Sui S, Chen Q (2012) Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 14(2):177–185CrossRefPubMedGoogle Scholar
  14. 14.
    Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, Nishikawa S, Tanemura M, Mimori K, Tanaka F, Saito T, Nishimura J, Takemasa I, Mizushima T, Ikeda M, Yamamoto H, Sekimoto M, Doki Y, Mori M (2011) Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8(6):633–638CrossRefPubMedGoogle Scholar
  15. 15.
    Mughal W, Nguyen L, Pustylnik S, da Silva Rosa SC, Piotrowski S, Chapman D, Du M, Alli NS, Grigull J, Halayko AJ, Aliani M, Topham MK, Epand RM, Hatch GM, Pereira TJ, Kereliuk S, McDermott JC, Rampitsch C, Dolinsky VW, Gordon JW (2015) A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells. Cell Death Dis 6:e1944CrossRefPubMedGoogle Scholar
  16. 16.
    Okamoto K, Kondo-Okamoto N, Ohsumi Y (2009) Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17(1):87–97CrossRefPubMedGoogle Scholar
  17. 17.
    Olde Loohuis NF, Nadif Kasri N, Glennon JC, van Bokhoven H, Hebert SS, Kaplan BB, Martens GJ, Aschrafi A (2016) The schizophrenia risk gene MIR137 acts as a hippocampal gene network node orchestrating the expression of genes relevant to nervous system development and function. Prog Neuropsychopharmacol Biol Psychiatry 73:109CrossRefPubMedGoogle Scholar
  18. 18.
    Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122(6):927–939CrossRefPubMedGoogle Scholar
  19. 19.
    Rebane A (2015) microRNA and Allergy. Adv Exp Med Biol 888:331–352CrossRefPubMedGoogle Scholar
  20. 20.
    Sarkar FH, Li Y, Wang Z, Kong D, Ali S (2010) Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resist Updat 13(3):57–66CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC, Kundu M, Opferman JT, Cleveland JL, Miller JL, Ney PA (2007) NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci U S A 104(49):19500–19505ADSCrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tian W, Chen J, He H, Deng Y (2013) MicroRNAs and drug resistance of breast cancer: basic evidence and clinical applications. Clin Transl Oncol 15(5):335–342CrossRefPubMedGoogle Scholar
  23. 23.
    Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27(2):433–446CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wystub K, Besser J, Bachmann A, Boettger T, Braun T (2013) miR-1/133a clusters cooperatively specify the cardiomyogenic lineage by adjustment of myocardin levels during embryonic heart development. PLoS Genet 9(9):e1003793CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12(Suppl 2):1542–1552CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zhang J, Ney PA (2009) Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 16(7):939–946CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhang Z, Hong Y, Xiang D, Zhu P, Wu E, Li W, Mosenson J, Wu WS (2015) MicroRNA-302/367 cluster governs hESC self-renewal by dually regulating cell cycle and apoptosis pathways. Stem Cell Rep 4(4):645–657CrossRefGoogle Scholar
  28. 28.
    Zhang Z, Xiang D, Heriyanto F, Gao Y, Qian Z, Wu WS (2013) Dissecting the roles of miR-302/367 cluster in cellular reprogramming using TALE-based repressor and TALEN. Stem Cell Rep 1(3):218–225CrossRefGoogle Scholar
  29. 29.
    Zhao N, Jin L, Fei G, Zheng Z, Zhong C (2014) Serum microRNA-133b is associated with low ceruloplasmin levels in Parkinson's disease. Parkinsonism Relat Disord 20(11):1177–1180CrossRefPubMedGoogle Scholar
  30. 30.
    Zhong D, Huang G, Zhang Y, Zeng Y, Xu Z, Zhao Y, He X, He F (2013) MicroRNA-1 and microRNA-206 suppress LXRalpha-induced lipogenesis in hepatocytes. Cell Signal 25(6):1429–1437CrossRefPubMedGoogle Scholar
  31. 31.
    Zou Z, Wu L, Ding H, Wang Y, Zhang Y, Chen X, Chen X, Zhang CY, Zhang Q, Zen K (2012) MicroRNA-30a sensitizes tumor cells to cis-platinum via suppressing beclin 1-mediated autophagy. J Biol Chem 287(6):4148–4156CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Wen Li
    • 1
  • Hao Chen
    • 1
  • Shupeng Li
    • 1
  • Guanghong Lin
    • 1
  • Du Feng
    • 1
    • 2
  1. 1.Institute of Neurology, Guangdong Key Laboratory of Age-related Cardiac-cerebral Vascular Disease, The Affiliated Hospital of Guangdong Medical UniversityGuangdong Medical UniversityZhanjiangChina
  2. 2.The Department of Developmental Biology, Harvard School of Dental MedicineHarvard Medical SchoolBostonUSA

Personalised recommendations