Skip to main content

MitoPho8Δ60 Assay as a Tool to Quantitatively Measure Mitophagy Activity

  • Protocol
  • First Online:
Mitophagy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1759))

Abstract

Mitophagy, a selective type of macroautophagy (hereafter referred to as autophagy), specifically mediates the vacuole/lysosome-dependent degradation of damaged or surplus mitochondria. Because this process regulates the number and quality of mitochondria, it is vital for proper cellular homeostasis. Mitophagy also plays critical roles in the clearance of paternal mitochondria in C. elegans embryos, in erythroid cell maturation, and in the prevention of neurodegenerative disease and cancer. In order to study the molecular mechanism and regulation of mitophagy, sensitive assays are necessary to quantitatively measure mitophagy activity. In the budding yeast, Saccharomyces cerevisiae, a “mitoPho8Δ60” assay was developed to study mitophagy. In this assay, Pho8, a vacuolar phosphatase protein, is genetically engineered to be targeted to mitochondria. When mitophagy is induced, the phosphatase protein, along with mitochondria, is conveyed to the vacuole, where its C-terminal propeptide is removed and the phosphatase activity becomes activated; under growing conditions only a background level of delivery occurs. For this reason, the enzymatic activity of mitoPho8Δ60 is correlated with the amount of mitochondria delivered to the vacuole. Thus, this assay serves as a very convenient tool to quantitatively monitor mitophagy activity in yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Deretic V, Levine B (2009) Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5:527–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Klionsky DJ, Codogno P (2013) The mechanism and physiological function of macroautophagy. J Innate Immun 5:427–433

    Article  CAS  PubMed  Google Scholar 

  3. Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109

    Article  CAS  PubMed  Google Scholar 

  4. Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7:279–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jin M, Liu X, Klionsky DJ (2013) SnapShot: selective autophagy. Cell 152:368–368.e2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kanki T, Wang K, Cao Y, Baba M, Klionsky DJ (2009) Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 17:98–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Okamoto K, Kondo-Okamoto N, Ohsumi Y (2009) Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17:87–97

    Article  PubMed  Google Scholar 

  8. Motley AM, Nuttall JM, Hettema EH (2012) Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J 31:2852–2868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Scott SV, Guan J, Hutchins MU, Kim J, Klionsky DJ (2001) Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway. Mol Cell 7:1131–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sato M, Sato K (2011) Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334:1141–1144

    Article  CAS  PubMed  Google Scholar 

  12. Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, Wang J (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature 454:232–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12:9–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ashrafi G, Schwarz TL (2013) The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20:31–42

    Article  CAS  PubMed  Google Scholar 

  15. Klionsky DJ, Emr SD (1989) Membrane protein sorting: biosynthesis, transport and processing of yeast vacuolar alkaline phosphatase. EMBO J 8:2241–2250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kanki T, Wang K, Klionsky DJ (2010) A genomic screen for yeast mutants defective in mitophagy. Autophagy 6:278–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30:e23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kanki T, Wang K, Baba M, Bartholomew CR, Lynch-Day MA, Du Z, Geng J, Mao K, Yang Z, Yen WL, Klionsky DJ (2009) A genomic screen for yeast mutants defective in selective mitochondria autophagy. Mol Biol Cell 20:4730–4738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96

    Article  CAS  PubMed  Google Scholar 

  20. Cheong H, Klionsky DJ (2008) Biochemical methods to monitor autophagy-related processes in yeast. Methods Enzymol 451:1–26

    Article  CAS  PubMed  Google Scholar 

  21. Mao K, Wang K, Liu X, Klionsky DJ (2013) The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy. Dev Cell 26:9–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant GM053396 to D.J.K. and a Rackham Predoctoral Fellowship to X.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Klionsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yao, Z., Liu, X., Klionsky, D.J. (2017). MitoPho8Δ60 Assay as a Tool to Quantitatively Measure Mitophagy Activity. In: Hattori, N., Saiki, S. (eds) Mitophagy. Methods in Molecular Biology, vol 1759. Humana Press, New York, NY. https://doi.org/10.1007/7651_2017_12

Download citation

  • DOI: https://doi.org/10.1007/7651_2017_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7749-9

  • Online ISBN: 978-1-4939-7750-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics