pp 1-13 | Cite as

Investigation of Yeast Mitophagy with Fluorescence Microscopy and Western Blotting

Part of the Methods in Molecular Biology book series


Selective clearance of superfluous or dysfunctional mitochondria is a fundamental process that depends on the autophagic membrane trafficking pathways found in many cell types. This catabolic event, called mitophagy, is conserved from yeast to humans and serves to control mitochondrial quality and quantity. In budding yeast, degradation of mitochondria occurs under various physiological conditions, such as respiration at stationary phase, or starvation in a prolonged period. During these events, the transmembrane protein Atg32 localizes to the mitochondrial surface and plays a specific and essential role in yeast mitophagy. In this chapter, we describe methods to observe transport of mitochondria to the vacuole, a lytic compartment in yeast, using fluorescence microscopy, and semi-quantify the progression of Atg32-mediated mitophagy by Western blotting.


Atg32 Fluorescence microscopy Mitophagy Western blotting Yeast 


  1. 1.
    Mishra P, Chan DC (2016) Metabolic regulation of mitochondrial dynamics. J Cell Biol 212:379–387CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Okamoto K, Kondo-Okamoto N (2012) Mitochondria and autophagy: critical interplay between the two homeostats. Biochim Biophys Acta 1820:595–600CrossRefPubMedGoogle Scholar
  3. 3.
    Labbe K, Murley A, Nunnari J (2014) Determinants and functions of mitochondrial behavior. Annu Rev Cell Dev Biol 30:357–391CrossRefPubMedGoogle Scholar
  4. 4.
    Scheibye-Knudsen M, Fang EF, Croteau DL, Wilson DM 3rd, Bohr VA (2015) Protecting the mitochondrial powerhouse. Trends Cell Biol 25:158–170CrossRefPubMedGoogle Scholar
  5. 5.
    Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062–1065ADSCrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mishra P, Chan DC (2014) Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol 15:634–646CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Okamoto K (2014) Organellophagy: eliminating cellular building blocks via selective autophagy. J Cell Biol 205:435–445CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yamano K, Matsuda N, Tanaka K (2016) The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep 17:300–316CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nguyen TN, Padman BS, Lazarou M (2016) Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol 26:733–744CrossRefPubMedGoogle Scholar
  10. 10.
    Liu L, Sakakibara K, Chen Q, Okamoto K (2014) Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res 24:787–795CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wei H, Liu L, Chen Q (2015) Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses. Biochim Biophys Acta 1853:2784–2790CrossRefPubMedGoogle Scholar
  12. 12.
    Murakawa T et al (2015) Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun 6:7527ADSCrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kanki T, Wang K, Cao Y, Baba M, Klionsky DJ (2009) Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 17:98–109CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Okamoto K, Kondo-Okamoto N, Ohsumi Y (2009) Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17:87–97CrossRefPubMedGoogle Scholar
  15. 15.
    Eiyama A, Kondo-Okamoto N, Okamoto K (2013) Mitochondrial degradation during starvation is selective and temporally distinct from bulk autophagy in yeast. FEBS Lett 587:1787–1792CrossRefPubMedGoogle Scholar
  16. 16.
    Sakakibara K et al (2015) Phospholipid methylation controls Atg32-mediated mitophagy and Atg8 recycling. EMBO J 34:2703–2719CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan

Personalised recommendations