Skip to main content

Construction of Thymus Organoids from Decellularized Thymus Scaffolds

  • Protocol
  • First Online:
Book cover Organoids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1576))

Abstract

One of the hallmarks of modern medicine is the development of therapeutics that can modulate immune responses, especially the adaptive arm of immunity, for disease intervention and prevention. While tremendous progress has been made in the past decades, manipulating the thymus, the primary lymphoid organ responsible for the development and education of T lymphocytes, remains a challenge. One of the major obstacles is the difficulty to reproduce its unique extracellular matrix (ECM) microenvironment that is essential for maintaining the function and survival of thymic epithelial cells (TECs), the predominant population of cells in the thymic stroma. Here, we describe the construction of functional thymus organoids from decellularized thymus scaffolds repopulated with isolated TECs. Thymus decellularization was achieved by freeze–thaw cycles to induce intracellular ice crystal formation, followed by detergent-induced cell lysis. Cellular debris was removed with extensive wash. The decellularized thymus scaffolds can largely retain the 3D extracellular matrix (ECM) microenvironment that can support the recolonization of TECs. When transplanted into athymic nude mice, the reconstructed thymus organoids can effectively promote the homing of bone marrow-derived lymphocyte progenitors and support the development of a diverse and functional T cell repertoire. Bioengineering of thymus organoids can be a promising approach to rejuvenate/modulate the function of T-cell mediated adaptive immunity in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klein L, Kyewski B, Allen PM, Hogquist KA (2014) Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nat Rev Immunol 14(6):377–391. doi:https://doi.org/10.1038/nri3667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fan Y, Rudert WA, Grupillo M, He J, Sisino G, Trucco M (2009) Thymus-specific deletion of insulin induces autoimmune diabetes. EMBO J 28(18):2812–2824. doi:https://doi.org/10.1038/emboj.2009.212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fan Y, Gualtierotti G, Tajima A, Grupillo M, Coppola A, He J et al (2014) Compromised central tolerance of ICA69 induces multiple organ autoimmunity. J Autoimmun 53:10–25. doi:https://doi.org/10.1016/j.jaut.2014.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boehm T, Swann JB (2013) Thymus involution and regeneration: two sides of the same coin? Nat Rev Immunol 13(11):831–838. doi:https://doi.org/10.1038/nri3534

    Article  CAS  PubMed  Google Scholar 

  5. Bodey B, Bodey B Jr, Siegel SE, Kaiser HE (1997) Involution of the mammalian thymus, one of the leading regulators of aging. In Vivo 11(5):421–440

    CAS  PubMed  Google Scholar 

  6. Goronzy JJ, Fang F, Cavanagh MM, Qi Q, Weyand CM (2015) Naive T cell maintenance and function in human aging. J Immunol 194(9):4073–4080. doi:https://doi.org/10.4049/jimmunol.1500046

    Article  CAS  PubMed  Google Scholar 

  7. Nikolich-Zugich J, Rudd BD (2010) Immune memory and aging: an infinite or finite resource? Curr Opin Immunol 22(4):535–540. doi:https://doi.org/10.1016/j.coi.2010.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Palmer DB (2013) The effect of age on thymic function. Front Immunol 4:316. doi:https://doi.org/10.3389/fimmu.2013.00316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Borges M, Barreira-Silva P, Florido M, Jordan MB, Correia-Neves M, Appelberg R (2012) Molecular and cellular mechanisms of Mycobacterium avium-induced thymic atrophy. J Immunol 189(7):3600–3608. doi:https://doi.org/10.4049/jimmunol.1201525

    Article  CAS  PubMed  Google Scholar 

  10. Ye P, Kirschner DE, Kourtis AP (2004) The thymus during HIV disease: role in pathogenesis and in immune recovery. Curr HIV Res 2(2):177–183

    Article  CAS  PubMed  Google Scholar 

  11. Black S, De Gregorio E, Rappuoli R (2015) Developing vaccines for an aging population. Sci Transl Med 7(281):281ps8. doi:https://doi.org/10.1126/scitranslmed.aaa0722

    Article  PubMed  Google Scholar 

  12. Di Stefano B, Graf T (2014) Hi-TEC reprogramming for organ regeneration. Nat Cell Biol 16(9):824–825. doi:https://doi.org/10.1038/ncb3032

    Article  CAS  PubMed  Google Scholar 

  13. Bredenkamp N, Nowell CS, Blackburn CC (2014) Regeneration of the aged thymus by a single transcription factor. Development 141(8):1627–1637. doi:https://doi.org/10.1242/dev.103614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takahama Y (2006) Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol 6(2):127–135. doi:https://doi.org/10.1038/nri1781

    Article  CAS  PubMed  Google Scholar 

  15. Ohigashi I, Kozai M, Takahama Y (2016) Development and developmental potential of cortical thymic epithelial cells. Immunol Rev 271(1):10–22. doi:https://doi.org/10.1111/imr.12404

    Article  CAS  PubMed  Google Scholar 

  16. Anderson G, Takahama Y (2012) Thymic epithelial cells: working class heroes for T cell development and repertoire selection. Trends Immunol 33(6):256–263. doi:https://doi.org/10.1016/j.it.2012.03.005

    Article  CAS  PubMed  Google Scholar 

  17. Starr TK, Jameson SC, Hogquist KA (2003) Positive and negative selection of T cells. Annu Rev Immunol 21:139–176. doi:https://doi.org/10.1146/annurev.immunol.21.120601.141107

    Article  CAS  PubMed  Google Scholar 

  18. Seach N, Mattesich M, Abberton K, Matsuda K, Tilkorn DJ, Rophael J et al (2010) Vascularized tissue engineering mouse chamber model supports thymopoiesis of ectopic thymus tissue grafts. Tissue Eng Part C Methods 16(3):543–551. doi:https://doi.org/10.1089/ten.TEC.2009.0135

    Article  CAS  PubMed  Google Scholar 

  19. Baptista PM, Orlando G, Mirmalek-Sani SH, Siddiqui M, Atala A, Soker S (2009) Whole organ decellularization—a tool for bioscaffold fabrication and organ bioengineering. Conf Proc IEEE Eng Med Biol Soc 2009:6526–9. doi:https://doi.org/10.1109/IEMBS.2009.5333145

    Article  Google Scholar 

  20. Booth C, Soker T, Baptista P, Ross CL, Soker S, Farooq U et al (2012) Liver bioengineering: current status and future perspectives. World J Gastroenterol 18(47):6926–6934. doi:https://doi.org/10.3748/wjg.v18.i47.6926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fan Y, Tajima A, Goh SK, Geng X, Gualtierotti G, Grupillo M et al (2015) Bioengineering thymus organoids to restore thymic function and induce donor-specific immune tolerance to allografts. Mol Ther 23(7):1262–77. doi:https://doi.org/10.1038/mt.2015.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health grant R01 AI123392 (YF) and by the generous support of Allegheny Health Network to the Institute of Cellular Therapeutics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Fan Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tajima, A., Pradhan, I., Geng, X., Trucco, M., Fan, Y. (2016). Construction of Thymus Organoids from Decellularized Thymus Scaffolds. In: Turksen, K. (eds) Organoids. Methods in Molecular Biology, vol 1576. Humana, New York, NY. https://doi.org/10.1007/7651_2016_9

Download citation

  • DOI: https://doi.org/10.1007/7651_2016_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-7616-4

  • Online ISBN: 978-1-4939-7617-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics