Skip to main content

Generation of Regionally Specific Neural Progenitor Cells (NPCs) and Neurons from Human Pluripotent Stem Cells (hPSCs)

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1516))

Abstract

Neural progenitor cells (NPCs) derived from human pluripotent stem cells (hPSCs) are a multipotent cell population capable of long-term expansion and differentiation into a variety of neuronal subtypes. As such, NPCs have tremendous potential for disease modeling, drug screening, and regenerative medicine. Current methods for the generation of NPCs results in cell populations homogenous for pan-neural markers such as SOX1 and SOX2 but heterogeneous with respect to regional identity. In order to use NPCs and their neuronal derivatives to investigate mechanisms of neurological disorders and develop more physiologically relevant disease models, methods for generation of regionally specific NPCs and neurons are needed. Here, we describe a protocol in which exogenous manipulation of WNT signaling, through either activation or inhibition, during neural differentiation of hPSCs, promotes the formation of regionally homogenous NPCs and neuronal cultures. In addition, we provide methods to monitor and characterize the efficiency of hPSC differentiation to these regionally specific cell identities.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lunn JS, Sakowski SA, Hur J, Feldman EL (2011) Stem cell technology for neurodegenerative diseases. Ann Neurol 70(3):353–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alzheimer's Association (2015) Alzheimer's disease facts and figures. Alzheimers Dement. 11(3):332–384

    Google Scholar 

  3. Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501(7465):45–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Castellani RJ, Rolston RK, Smith MA (2010) Alzheimer disease. Dis Mon 56(9):484–546

    Article  PubMed  PubMed Central  Google Scholar 

  5. Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122(Pt 8):1437–1448

    Article  PubMed  Google Scholar 

  6. Thomsen GM, Gowing G, Svendsen S, Svendsen CN (2014) The past, present and future of stem cell clinical trials for ALS. Exp Neurol 262(Pt B):127–137

    Article  CAS  PubMed  Google Scholar 

  7. Elkouby YM, Frank D. (2010) Wnt/β-Catenin Signaling in Vertebrate Posterior Neural Development. San Rafael (CA): Morgan & Claypool Life Sciences. Available from: https://www.ncbi.nlm.nih.gov/books/NBK53460/

  8. Kiecker C, Niehrs C (2001) A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 128(21):4189–4201

    CAS  PubMed  Google Scholar 

  9. Augustine K, Liu ET, Sadler TW (1993) Antisense attenuation of Wnt-1 and Wnt-3a expression in whole embryo culture reveals roles for these genes in craniofacial, spinal cord, and cardiac morphogenesis. Dev Genet 14(6):500–520

    Article  CAS  PubMed  Google Scholar 

  10. Augustine KA, Liu ET, Sadler TW (1995) Interactions of Wnt-1 and Wnt-3a are essential for neural tube patterning. Teratology 51(2):107–119

    Article  CAS  PubMed  Google Scholar 

  11. McMahon AP, Joyner AL, Bradley A, McMahon JA (1992) The midbrain-hindbrain phenotype of Wnt-1-/Wnt-1-mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell 69(4):581–595

    Article  CAS  PubMed  Google Scholar 

  12. Liu P, Wakamiya M, Shea MJ, Albrecht U, Behringer RR, Bradley A (1999) Requirement for Wnt3 in vertebrate axis formation. Nat Genet 22:361–365

    Article  CAS  PubMed  Google Scholar 

  13. Lekven AC, Thorpe CJ, Waxman JS, Moon RT (2001) Zebrafish wnt8 encodes two wnt8 proteins on a bicistronic transcript and is required for mesoderm and neurectoderm patterning. Dev Cell 1(1):103–114

    Article  CAS  PubMed  Google Scholar 

  14. Erter CE, Wilm TP, Basler N, Wright CV, Solnica-Krezel L (2001) Wnt8 is required in lateral mesendodermal precursors for neural posteriorization in vivo. Development 128(18):3571–3583

    CAS  PubMed  Google Scholar 

  15. Glinka A, Wu W, Onichtchouk D, Blumenstock C, Niehrs C (1997) Head induction by simultaneous repression of Bmp and Wnt signalling in Xenopus. Nature 389(6650):517–519

    Article  CAS  PubMed  Google Scholar 

  16. Ciani L, Salinas PC (2005) WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci 6(5):351–362

    Article  CAS  PubMed  Google Scholar 

  17. McGrew LL, Lai CJ, Moon RT (1995) Specification of the anteroposterior neural axis through synergistic interaction of the Wnt signaling cascade with noggin and follistatin. Dev Biol 172(1):337–342

    Article  CAS  PubMed  Google Scholar 

  18. McGrew LL, Hoppler S, Moon RT (1997) Wnt and FGF pathways cooperatively pattern anteroposterior neural ectoderm in Xenopus. Mech Dev 69(1–2):105–114

    Article  CAS  PubMed  Google Scholar 

  19. Hamilton FS, Wheeler GN, Hoppler S (2001) Difference in XTcf-3 dependency accounts for change in response to beta-catenin-mediated Wnt signalling in Xenopus blastula. Development 128(11):2063–2073

    CAS  PubMed  Google Scholar 

  20. Darken RS, Wilson PA (2001) Axis induction by wnt signaling: target promoter responsiveness regulates competence. Dev Biol 234(1):42–54

    Article  CAS  PubMed  Google Scholar 

  21. Moya N, Cutts J, Gaasterland T, Willert K, Brafman DA (2014) Endogenous WNT signaling regulates hPSC-derived neural progenitor cell heterogeneity and specifies their regional identity. Stem Cell Rep 3(6):1015–1028

    Article  CAS  Google Scholar 

  22. Chen B, Dodge ME, Tang W, Lu J, Ma Z, Fan C-W et al (2009) Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol 5(2):100–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. VanGuilder HD, Vrana KE, Freeman WM (2008) Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 44(5):619–626

    Article  CAS  PubMed  Google Scholar 

  24. Hellemans J, Vandesompele J (2014) Selection of reliable reference genes for RT-qPCR analysis. Methods Mol Biol 1160:19–26

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Brafman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cutts, J., Brookhouser, N., Brafman, D.A. (2016). Generation of Regionally Specific Neural Progenitor Cells (NPCs) and Neurons from Human Pluripotent Stem Cells (hPSCs). In: Turksen, K. (eds) Stem Cell Heterogeneity. Methods in Molecular Biology, vol 1516. Humana Press, New York, NY. https://doi.org/10.1007/7651_2016_357

Download citation

  • DOI: https://doi.org/10.1007/7651_2016_357

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6549-6

  • Online ISBN: 978-1-4939-6550-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics