Skip to main content

Uniform Embryoid Body Production and Enhanced Mesendoderm Differentiation with Murine Embryonic Stem Cells in a Rotary Suspension Bioreactor

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1502))

Abstract

Embryonic stem cells (ESCs) are capable of differentiating into almost all cell types in vitro and hold great promise for drug screening, developmental studies and have a huge potential in many therapeutic areas. ESCs can aggregate to form embryoid body (EB) in static suspension culture by spontaneous differentiation, which resembles an intact embryo; while static suspension culture cannot prevent agglomeration of cells and offers little control over the size and shape of EBs, it results in aggregation of EBs into large, irregular masses, which prejudice the efficiency of differentiation of cells. Recently, bioreactor-based platforms have been shown to not only offer a beneficial effect on increasing diffusion of nutrients and oxygen which promotes cell viability and proliferation but also display local biomechanical properties (e.g., low fluid shear stresses and hydrodynamic force) in tissue development and organogenesis. This chapter describes a protocol for using a rotary suspension bioreactor to produce embryoid bodies and process the differentiation of mouse embryonic stem cells (mESCs), and to assess the efficiency of EB differentiation in the bioreactor by real-time PCR and immunostaining.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wu SM, Hochedlinger K (2011) Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol 13:497–505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Hochedlinger K, Jaenisch R (2003) Nuclear transplantation, embryonic stem cells, and the potential for cell therapy. N Engl J Med 349:275–286

    Article  PubMed  CAS  Google Scholar 

  3. Dang SM, Kyba M, Perlingeiro R et al (2002) Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnol Bioeng 78:442–453

    Article  PubMed  CAS  Google Scholar 

  4. Carpenedo RL, Sargent CY, McDevitt TC (2007) Rotary suspension culture enhances the efficiency, yield, and homogeneity of embryoid body differentiation. Stem Cells 25:2224–2234

    Article  PubMed  Google Scholar 

  5. Chen X, Xu H, Wan C et al (2006) Bioreactor expansion of human adult bone marrow-derived mesenchymal stem cells. Stem Cells 24:2052–2059

    Article  PubMed  CAS  Google Scholar 

  6. King JA, Miller WM (2007) Bioreactor development for stem cell expansion and controlled differentiation. Curr Opin Chem Biol 11:394–398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Rungarunlert S, Techakumphu M, Pirity MK et al (2009) Embryoid body formation from embryonic and induced pluripotent stem cells: benefits of bioreactors. World J Stem Cells 1:11–21

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kim JB, Stein R, O’Hare MJ (2004) Three-dimensional in vitro tissue culture models of breast cancer—a review. Breast Cancer Res Treat 85:281–291

    Article  PubMed  Google Scholar 

  9. Mitteregger R, Vogt G, Rossmanith E et al (1999) Rotary cell culture system (RCCS): a new method for cultivating hepatocytes on microcarriers. Int J Artif Organs 22:816–822

    PubMed  CAS  Google Scholar 

  10. Villanueva I, Klement BJ, von Deutsch D et al (2009) Cross-linking density alters early metabolic activities in chondrocytes encapsulated in poly(ethylene glycol) hydrogels and cultured in the rotating wall vessel. Biotechnol Bioeng 102:1242–1250

    Article  PubMed  CAS  Google Scholar 

  11. Li S, Ma Z, Niu Z et al (2009) NASA-approved rotary bioreactor enhances proliferation and osteogenesis of human periodontal ligament stem cells. Stem Cells Dev 18:1273–1282

    Article  PubMed  CAS  Google Scholar 

  12. Lei X, Ning L, Cao Y et al (2011) NASA-approved rotary bioreactor enhances proliferation of human epidermal stem cells and supports formation of 3D epidermis-like structure. PLoS One 6:e26603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lei X, Deng Z, Zhang H et al (2014) Rotary suspension culture enhances mesendoderm differentiation of embryonic stem cells through modulation of Wnt/beta-catenin pathway. Stem Cell Rev 10:526–538

    Article  PubMed  CAS  Google Scholar 

  14. Walker E, Ohishi M, Davey RE et al (2007) Prediction and testing of novel transcriptional networks regulating embryonic stem. Cell Stem Cell 1:71–86

    Article  PubMed  CAS  Google Scholar 

  15. Liu S, Wang X, Zhao Q et al (2015) Senescence of human skin-derived precursors regulated by Akt-FOXO3-p27(KIP(1))/p15(INK(4)b) signaling. Cell Mol Life Sci 72:2949–2960

    Article  PubMed  CAS  Google Scholar 

  16. Larionov A, Krause A, Miller W (2005) A standard curve based method for relative real time PCR data processing. BMC Bioinformatics 6:62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  18. Deng Z, Lei X, Zhang X et al (2015) mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration. J Mol Cell Biol 7:62–72

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been funded by National Basic Research Program of China (2011CB710905), Strategic Priority Research Program of the Chinese Academy of Sciences (XDA04020419, XDA04020202-20 and XDA01010202), the Chinese Manned Space Flight Technology Project (TZ-1) and the NSFC Grant (31471287).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enkui Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lei, X., Deng, Z., Duan, E. (2016). Uniform Embryoid Body Production and Enhanced Mesendoderm Differentiation with Murine Embryonic Stem Cells in a Rotary Suspension Bioreactor. In: Turksen, K. (eds) Bioreactors in Stem Cell Biology. Methods in Molecular Biology, vol 1502. Humana Press, New York, NY. https://doi.org/10.1007/7651_2016_354

Download citation

  • DOI: https://doi.org/10.1007/7651_2016_354

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6476-5

  • Online ISBN: 978-1-4939-6478-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics