Skip to main content

A Bioreactor to Apply Multimodal Physical Stimuli to Cultured Cells

  • Protocol
  • First Online:
Bioreactors in Stem Cell Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1502))

Abstract

Cells residing in the cardiac niche are constantly experiencing physical stimuli, including electrical pulses and cyclic mechanical stretch. These physical signals are known to influence a variety of cell functions, including the secretion of growth factors and extracellular matrix proteins by cardiac fibroblasts, calcium handling and contractility in cardiomyocytes, or stretch-activated ion channels in muscle and non-muscle cells of the cardiovascular system. Recent progress in cardiac tissue engineering suggests that controlled physical stimulation can lead to functional improvements in multicellular cardiac tissue constructs. To study these effects, aspects of the physical environment of the myocardium have to be mimicked in vitro. Applying continuous live imaging, this protocol demonstrates how a specifically designed bioreactor system allows controlled exposure of cultured cells to cyclic stretch, rhythmic electrical stimulation, and controlled fluid perfusion, at user-defined temperatures.

*These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leychenko A, Konorev E, Jijiwa M, Matter ML (2011) Stretch-induced hypertrophy activates NFkB-mediated VEGF secretion in adult cardiomyocytes. PLoS One 6(12):e29055. doi:10.1371/journal.pone.0029055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Tsai CT, Chiang FT, Tseng CD, Yu CC, Wang YC, Lai LP, Hwang JJ, Lin JL (2011) Mechanical stretch of atrial myocyte monolayer decreases sarcoplasmic reticulum calcium adenosine triphosphatase expression and increases susceptibility to repolarization alternans. J Am Coll Cardiol 58(20):2106–2115. doi:10.1016/j.jacc.2011.07.039

    Article  PubMed  CAS  Google Scholar 

  3. Husse B, Briest W, Homagk L, Isenberg G, Gekle M (2007) Cyclical mechanical stretch modulates expression of collagen I and collagen III by PKC and tyrosine kinase in cardiac fibroblasts. Am J Physiol Regul Integr Comp Physiol 293(5):R1898–R1907. doi:10.1152/ajpregu.00804.2006

    Article  PubMed  CAS  Google Scholar 

  4. Lee AA, Delhaas T, McCulloch AD, Villarreal FJ (1999) Differential responses of adult cardiac fibroblasts to in vitro biaxial strain patterns. J Mol Cell Cardiol 31(10):1833–1843. doi:10.1006/jmcc.1999.1017

    Article  PubMed  CAS  Google Scholar 

  5. Berger HJ, Prasad SK, Davidoff AJ, Pimental D, Ellingsen O, Marsh JD, Smith TW, Kelly RA (1994) Continual electric field stimulation preserves contractile function of adult ventricular myocytes in primary culture. Am J Physiol 266(1 Pt 2):H341–H349

    PubMed  CAS  Google Scholar 

  6. Holt E, Lunde PK, Sejersted OM, Christensen G (1997) Electrical stimulation of adult rat cardiomyocytes in culture improves contractile properties and is associated with altered calcium handling. Basic Res Cardiol 92(5):289–298

    Article  PubMed  CAS  Google Scholar 

  7. Zimmermann WH, Melnychenko I, Eschenhagen T (2004) Engineered heart tissue for regeneration of diseased hearts. Biomaterials 25(9):1639–1647

    Article  PubMed  CAS  Google Scholar 

  8. Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, Freed LE, Vunjak-Novakovic G (2004) Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci U S A 101(52):18129–18134. doi:10.1073/pnas.0407817101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Feng Z, Matsumoto T, Nomura Y, Nakamura T (2005) An electro-tensile bioreactor for 3-D culturing of cardiomyocytes. A bioreactor system that simulates the myocardium’s electrical and mechanical response in vivo. IEEE Eng Med Biol Mag 24(4):73–79

    Article  PubMed  Google Scholar 

  10. Carrier RL, Rupnick M, Langer R, Schoen FJ, Freed LE, Vunjak-Novakovic G (2002) Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng 8(2):175–188. doi:10.1089/107632702753724950

    Article  PubMed  CAS  Google Scholar 

  11. Radisic M, Yang L, Boublik J, Cohen RJ, Langer R, Freed LE, Vunjak-Novakovic G (2004) Medium perfusion enables engineering of compact and contractile cardiac tissue. Am J Physiol Heart Circ Physiol 286(2):H507–H516. doi:10.1152/ajpheart.00171.2003

    Article  PubMed  CAS  Google Scholar 

  12. Radisic M, Marsano A, Maidhof R, Wang Y, Vunjak-Novakovic G (2008) Cardiac tissue engineering using perfusion bioreactor systems. Nat Protoc 3(4):719–738. doi:10.1038/nprot.2008.40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Maidhof R, Tandon N, Lee EJ, Luo J, Duan Y, Yeager K, Konofagou E, Vunjak-Novakovic G (2012) Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue. J Tissue Eng Regen Med 6(10):e12–e23. doi:10.1002/term.525

    Article  PubMed  Google Scholar 

  14. Lu L, Mende M, Yang X, Korber HF, Schnittler HJ, Weinert S, Heubach J, Werner C, Ravens U (2013) Design and validation of a bioreactor for simulating the cardiac niche: a system incorporating cyclic stretch, electrical stimulation, and constant perfusion. Tissue Eng Part A 19(3–4):403–414. doi:10.1089/ten.TEA.2012.0135

    Article  PubMed  CAS  Google Scholar 

  15. Lu L, Ravens U (2013) The use of a novel cardiac bioreactor system in investigating fibroblast physiology and its perspectives. Organogenesis 9(2):82–86. doi:10.4161/org.25014

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work has been supported by the European Research Council Advanced Grant CardioNECT, and the Magdi Yacoub Institute at Harefield. RP is holder of an Imperial College Junior Research Fellowship; PK is a Senior Fellow of the British Heart Foundation. We acknowledge Heinz-Felix Körber and Eva Rog-Zielinska for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Ravens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Edelmann, JC., Jones, L., Peyronnet, R., Lu, L., Kohl, P., Ravens, U. (2016). A Bioreactor to Apply Multimodal Physical Stimuli to Cultured Cells. In: Turksen, K. (eds) Bioreactors in Stem Cell Biology. Methods in Molecular Biology, vol 1502. Humana Press, New York, NY. https://doi.org/10.1007/7651_2016_336

Download citation

  • DOI: https://doi.org/10.1007/7651_2016_336

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6476-5

  • Online ISBN: 978-1-4939-6478-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics