Skip to main content

Decoding the Epigenetic Heterogeneity of Human Pluripotent Stem Cells with Seamless Gene Editing

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1516))

Abstract

Pluripotent stem cells exhibit cell cycle-regulated heterogeneity for trimethylation of histone-3 on lysine-4 (H3K4me3) on developmental gene promoters containing bivalent epigenetic domains. The heterogeneity of H3K4me3 can be attributed to Cyclin-dependent kinase-2 (CDK2) phosphorylation and activation of the histone methyltransferase, MLL2 (KMT2B), during late-G1. The deposition of H3K4me3 on developmental promoters in late-G1 establishes a permissive chromatin architecture that enables signaling cues to promote differentiation from the G1 phase. These data suggest that the inhibition of MLL2 phosphorylation and activation will prevent the initiation of differentiation. Here, we describe a method to seamlessly modify a putative CDK2 phosphorylation site on MLL2 to restrict its phosphorylation and activation. Specifically, by utilizing dimeric CRISPR RNA-guided nucleases, RFNs (commercially known as the NextGEN™ CRISPR), in combination with an excision-only piggyBac™ transposase, we demonstrate how to generate a point mutation of threonine-542, a predicted site to prevent MLL2 activation. This gene editing method enables the use of both positive and negative selection, and allows for subsequent removal of the donor cassette without leaving behind any unwanted DNA sequences or modifications. This seamless “donor-excision” approach provides clear advantages over using single stranded oligo-deoxynucleotides (ssODN) as donors to create point mutations, as the use of ssODN necessitate additional mutations in the donor PAM sequence, along with extensive cloning efforts. The method described here therefore provides the highest targeting efficiency with the lowest “off-target” mutation rates possible, while removing the labor-intensive efforts associated with screening thousands of clones. In sum, this chapter describes how seamless gene editing may be utilized to examine stem cell heterogeneity of epigenetic marks, but is also widely applicable for performing precise genetic manipulations in numerous other cell types.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Singh AM, Adjan Steffey VV, Yeshi T, Allison DW (2015) Gene editing in human pluripotent stem cells: choosing the correct path. J Stem Cell Regen Biol 1:1–5. doi:10.15436/2741-0598.15.004

    Google Scholar 

  2. Hendriks WT, Jiang X, Daheron L, Cowan CA (2015) TALEN- and CRISPR/Cas9-mediated gene editing in human pluripotent stem cells using lipid-based transfection. Curr Protoc Stem Cell Biol 34:5B.3.1–5B.3.25. doi:10.1002/9780470151808.sc05b03s34

    Article  Google Scholar 

  3. Li X, Burnight ER, Cooney AL et al (2013) piggyBac transposase tools for genome engineering. Proc Natl Acad Sci U S A 110:E2279–E2287. doi:10.1073/pnas.1305987110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koo T, Lee J, Kim JS (2015) Measuring and reducing off-target activities of programmable nucleases including CRISPR-Cas9. Mol Cell 38:475–481. doi:10.14348/molcells.2015.0103

    Article  CAS  Google Scholar 

  5. Guilinger JP, Thompson DB, Liu DR (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32:577–582. doi:10.1038/nbt.2909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tsai SQ, Wyvekens N, Khayter C et al (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32:569–576. doi:10.1038/nbt.2908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hara S, Tamano M, Yamashita S et al (2015) Generation of mutant mice via the CRISPR/Cas9 system using FokI-dCas9. Sci Rep 5:11221. doi:10.1038/srep11221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Singh AM (2015) Cell cycle-driven heterogeneity: on the road to demystifying the transitions between “poised” and “restricted” pluripotent cell states. Stem Cells Int 2015:219514. doi:10.1155/2015/219514

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ying Q-L, Wray J, Nichols J et al (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523. doi:10.1038/nature06968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marks H, Kalkan T, Menafra R et al (2012) The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149:590–604. doi:10.1016/j.cell.2012.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Price FD, Yin H, Jones A et al (2013) Canonical Wnt signaling induces a primitive endoderm metastable state in mouse embryonic stem cells. Stem Cells 31:752–764. doi:10.1002/stem.1321

    Article  CAS  PubMed  Google Scholar 

  12. Singh AM, Reynolds D, Cliff T et al (2012) Signaling network crosstalk in human pluripotent cells: a Smad2/3-regulated switch that controls the balance between self-renewal and differentiation. Cell Stem Cell 10:312–326. doi:10.1016/j.stem.2012.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Davidson KC, Adams AM, Goodson JM et al (2012) Wnt/β-catenin signaling promotes differentiation, not self-renewal, of human embryonic stem cells and is repressed by Oct4. Proc Natl Acad Sci U S A 109:4485–4490. doi:10.1073/pnas.1118777109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Blauwkamp TA, Nigam S, Ardehali R et al (2012) Endogenous Wnt signalling in human embryonic stem cells generates an equilibrium of distinct lineage-specified progenitors. Nat Commun 3:1070. doi:10.1038/ncomms2064

    Article  PubMed  PubMed Central  Google Scholar 

  15. Singh AM, Hamazaki T, Hankowski KE, Terada N (2007) A heterogeneous expression pattern for Nanog in embryonic stem cells. Stem Cells 25:2534–2542. doi:10.1634/stemcells.2007-0126

    Article  CAS  PubMed  Google Scholar 

  16. Chambers I, Silva J, Colby D et al (2007) Nanog safeguards pluripotency and mediates germline development. Nature 450:1230–1234. doi:10.1038/nature06403

    Article  CAS  PubMed  Google Scholar 

  17. Hatano S-Y, Tada M, Kimura H et al (2005) Pluripotential competence of cells associated with Nanog activity. Mech Dev 122:67–79. doi:10.1016/j.mod.2004.08.008

    Article  CAS  PubMed  Google Scholar 

  18. Kalmar T, Lim C, Hayward P et al (2009) Regulated fluctuations in nanog expression mediate cell fate decisions in embryonic stem cells. PLoS Biol 7, e1000149. doi:10.1371/journal.pbio.1000149

    Article  PubMed  PubMed Central  Google Scholar 

  19. Toyooka Y, Shimosato D, Murakami K et al (2008) Identification and characterization of subpopulations in undifferentiated ES cell culture. Development 135:909–918. doi:10.1242/dev.017400

    Article  CAS  PubMed  Google Scholar 

  20. Singh AM, Chappell J, Trost R et al (2013) Cell-cycle control of developmentally regulated transcription factors accounts for heterogeneity in human pluripotent cells. Stem Cell Rep 1:532–544. doi:10.1016/j.stemcr.2013.10.009

    Article  CAS  Google Scholar 

  21. Davidson KC, Mason EA, Pera MF (2015) The pluripotent state in mouse and human. Development 142:3090–3099. doi:10.1242/dev.116061

    Article  CAS  PubMed  Google Scholar 

  22. Mummery CL, van den Brink CE, de Laat SW (1987) Commitment to differentiation induced by retinoic acid in P19 embryonal carcinoma cells is cell cycle dependent. Dev Biol 121:10–19

    Article  CAS  PubMed  Google Scholar 

  23. Sela Y, Molotski N, Golan S et al (2012) Human embryonic stem cells exhibit increased propensity to differentiate during the G1 phase prior to phosphorylation of retinoblastoma protein. Stem Cells 30:1097–1108. doi:10.1002/stem.1078

    Article  CAS  PubMed  Google Scholar 

  24. Pauklin S, Vallier L (2013) The cell-cycle state of stem cells determines cell fate propensity. Cell 155:135–147. doi:10.1016/j.cell.2013.08.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chetty S, Pagliuca FW, Honore C et al (2013) A simple tool to improve pluripotent stem cell differentiation. Nat Methods 10:553–556. doi:10.1038/nmeth.2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Singh AM, Dalton S (2009) The cell cycle and Myc intersect with mechanisms that regulate pluripotency and reprogramming. Cell Stem Cell 5:141–149. doi:10.1016/j.stem.2009.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Singh AM, Sun Y, Li L et al (2015) Cell-cycle control of bivalent epigenetic domains regulates the exit from pluripotency. Stem Cell Rep 5:323–336. doi:10.1016/j.stemcr.2015.07.005

    Article  CAS  Google Scholar 

  28. Hu D, Garruss AS, Gao X et al (2013) The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells. Nat Struct Mol Biol 20:1093–1097. doi:10.1038/nsmb.2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Denissov S, Hofemeister H, Marks H et al (2014) Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant. Development 141:526–537. doi:10.1242/dev.102681

    Article  CAS  PubMed  Google Scholar 

  30. Morgan DO (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261–291. doi:10.1146/annurev.cellbio.13.1.261

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amar M. Singh or Daniel W. Allison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Singh, A.M., Perry, D.W., Steffey, V.V.A., Miller, K., Allison, D.W. (2016). Decoding the Epigenetic Heterogeneity of Human Pluripotent Stem Cells with Seamless Gene Editing. In: Turksen, K. (eds) Stem Cell Heterogeneity. Methods in Molecular Biology, vol 1516. Humana Press, New York, NY. https://doi.org/10.1007/7651_2016_324

Download citation

  • DOI: https://doi.org/10.1007/7651_2016_324

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6549-6

  • Online ISBN: 978-1-4939-6550-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics