Skip to main content

Large-Scale Expansion and Differentiation of Mesenchymal Stem Cells in Microcarrier-Based Stirred Bioreactors

  • Protocol
  • First Online:
Bioreactors in Stem Cell Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1502))

Abstract

Mesenchymal stem cells (MSCs) have emerged as an important tool for tissue engineering, thanks to their differentiation potential and their broad trophic activities. However, for clinical purposes or for relevant in vitro applications, large quantities of MSCs are required, which could hardly be reached using conventional cultivation in plastic dishes. Microcarriers have high surface to volume ratio, which enables the easy scale-up of the expansion and differentiation of MSCs. In addition, the agitation in stirred tank bioreactors limits the diffusion gradient of nutrients or morphogens, thus providing a physiologically relevant environment to favor MSC production at large scale. This work describes a simple method for the mass expansion and differentiation of MSCs, including the procedures to monitor the proliferation, metabolic status and phenotype of MSCs during suspension culture. Moreover, this work proposes suitable materials for cGMP compliant culture conditions enabling the clinical grade production of MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Linero I, Chaparro O (2014) Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLoS One 9:e107001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Gao X et al (2014) Bone marrow mesenchymal stem cells promote the repair of islets from diabetic mice through paracrine actions. Mol Cell Endocrinol 388:41–50

    Article  PubMed  CAS  Google Scholar 

  3. Wu L et al (2011) Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Eng Part A 17:1425–1436

    Article  PubMed  CAS  Google Scholar 

  4. Chan JKY, Lam PYP (2013) Human mesenchymal stem cells and their paracrine factors for the treatment of brain tumors. Cancer Gene Ther 20:539–543

    Article  PubMed  CAS  Google Scholar 

  5. Crisan M et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  PubMed  CAS  Google Scholar 

  6. Sacchetti B et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324–336

    Article  PubMed  CAS  Google Scholar 

  7. Van Dijk CGM et al (2015) The complex mural cell: pericyte function in health and disease. Int J Cardiol 190:75–89

    Article  PubMed  Google Scholar 

  8. Lozito TP et al (2013) Three-dimensional osteochondral microtissue to model pathogenesis of osteoarthritis. Stem Cell Res Ther 4:S6

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alexander PG, Gottardi R, Lin H, Lozito TP, Tuan RS (2014) Three-dimensional osteogenic and chondrogenic systems to model osteochondral physiology and degenerative joint diseases. Exp Biol Med (Maywood) 239:1080–1095

    Article  CAS  Google Scholar 

  10. Chen AK-L, Reuveny S, Oh SKW (2013) Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction. Biotechnol Adv 31:1032–1046

    Article  PubMed  CAS  Google Scholar 

  11. Sart S, Schneider Y-J, Li Y, Agathos SN (2014) Stem cell bioprocess engineering towards cGMP production and clinical applications. Cytotechnology 66:709–722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Van Wezel AL (1967) Growth of cell-strains and primary cells on micro-carriers in homogeneous culture. Nature 216:64–65

    Article  PubMed  Google Scholar 

  13. Sart S, Agathos SN, Li Y (2013) Engineering stem cell fate with biochemical and biomechanical properties of microcarriers. Biotechnol Prog 29:1354–1366

    Article  PubMed  CAS  Google Scholar 

  14. Martin Y, Eldardiri M, Lawrence-Watt DJ, Sharpe JR (2011) Microcarriers and their potential in tissue regeneration. Tissue Eng Part B Rev 17:71–80

    Article  PubMed  CAS  Google Scholar 

  15. Bertolo A et al (2015) Injectable microcarriers as human mesenchymal stem cell support and their application for cartilage and degenerated intervertebral disc repair. Eur Cell Mater 29:70–80, discussion 80–81

    PubMed  CAS  Google Scholar 

  16. Sart S, Ma T, Li Y (2013) Cryopreservation of pluripotent stem cell aggregates in defined protein-free formulation. Biotechnol Prog 29:143–153

    Article  PubMed  CAS  Google Scholar 

  17. Baxter MA et al (2004) Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells Dayt (Ohio) 22:675–682

    Article  CAS  Google Scholar 

  18. Sepúlveda JC et al (2014) Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. Stem Cells Dayt (Ohio) 32:1865–1877

    Article  CAS  Google Scholar 

  19. Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  20. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312

    Article  PubMed  CAS  Google Scholar 

  21. Sart S, Schneider Y-J, Agathos SN (2009) Ear mesenchymal stem cells: an efficient adult multipotent cell population fit for rapid and scalable expansion. J Biotechnol 139:291–299

    Article  PubMed  CAS  Google Scholar 

  22. Sart S, Errachid A, Schneider Y-J, Agathos SN (2013) Modulation of mesenchymal stem cell actin organization on conventional microcarriers for proliferation and differentiation in stirred bioreactors. J Tissue Eng Regen Med 7:537–551

    Article  PubMed  CAS  Google Scholar 

  23. Sart S, Ma T, Li Y (2014) Extracellular matrices decellularized from embryonic stem cells maintained their structure and signaling specificity. Tissue Eng Part A 20:54–66

    Article  PubMed  CAS  Google Scholar 

  24. Sart S, Schneider Y-J, Agathos SN (2010) Influence of culture parameters on ear mesenchymal stem cells expanded on microcarriers. J Biotechnol 150:149–160

    Article  PubMed  CAS  Google Scholar 

  25. Ragni E, Viganò M, Rebulla P, Giordano R, Lazzari L (2013) What is beyond a qRT-PCR study on mesenchymal stem cell differentiation properties: how to choose the most reliable housekeeping genes. J Cell Mol Med 17:168–180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Sart S, Tsai A-C, Li Y, Ma T (2014) Three-dimensional aggregates of mesenchymal stem cells: cellular mechanisms, biological properties, and applications. Tissue Eng Part B Rev 20:365–380

    Article  PubMed  Google Scholar 

  27. Frith JE, Thomson B, Genever PG (2010) Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Eng Part C Methods 16:735–749

    Article  PubMed  CAS  Google Scholar 

  28. Sucosky P, Osorio DF, Brown JB, Neitzel GP (2004) Fluid mechanics of a spinner-flask bioreactor. Biotechnol Bioeng 85:34–46

    Google Scholar 

  29. Liovic P, Sutalo ID, Stewart R, Glattauer V, Meagher L (2012) Fluid flow and stresses on microcarriers in spinner flask bioreactors. In: Ninth International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 10–12 December 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spiros N. Agathos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sart, S., Agathos, S.N. (2015). Large-Scale Expansion and Differentiation of Mesenchymal Stem Cells in Microcarrier-Based Stirred Bioreactors. In: Turksen, K. (eds) Bioreactors in Stem Cell Biology. Methods in Molecular Biology, vol 1502. Humana Press, New York, NY. https://doi.org/10.1007/7651_2015_314

Download citation

  • DOI: https://doi.org/10.1007/7651_2015_314

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6476-5

  • Online ISBN: 978-1-4939-6478-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics