Skip to main content

Islet Autoantibody Analysis: Radioimmunoassays

  • Protocol
  • First Online:
Type-1 Diabetes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1433))

Abstract

Type 1 diabetes (T1D) is a chronic inflammatory disease, caused by the immune mediated destruction of insulin-producing β-cells in the islets of the pancreas (Ziegler and Nepom, Immunity 32(4):468–478, 2010). Semiquantitative assays with high specificity and sensitivity for T1D are now available to detect antibodies to the four major islet autoantigens: glutamate decarboxylase (GADA) (Baekkeskov et al., Nature 347(6289):151–156, 1990), the protein tyrosine phosphatase-like proteins IA-2 (IA-2A) and IA-2β (Notkins et al., Diabetes Metab Rev 14(1):85–93, 1998), zinc transporter 8 (ZnT8A) (Wenzlau et al., Proc Natl Acad Sci U S A 104(43):17040–17045, 2007), and insulin (IAA) (Palmer, Diabetes Metab Rev 3(4):1005–1015, 1987). More than 85 % of cases of newly diagnosed or future T1D can be identified by testing for antibodies to GADA and/or IA-2A/IAA, with 98 % specificity (Bingley et al., Diabet Care 24(2):398, 2001). Overall, radioimmunoassay (RIA) is considered the de facto gold standard format for the measurement of T1D autoantibodies (Bottazzo et al., Lancet 2(7892):1279–1283, 1974; Schlosser et al., Diabetologia 53(12):2611–2620, 2010). Here we describe current methods for autoantibody measurement using RIA. These fluid phase assays use radiolabeled ligands and immunoprecipitation to quantify autoantibodies to GAD, IA-2, ZnT8, and insulin (Bonifacio et al., J Clin Endocrinol Metab 95(7):3360–3367, 2010; Long et al., Clin Endocrinol Metab 97(2):632–637, 2012; Williams et al., J Autoimmun 10(5):473–478, 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ziegler AG, Nepom GT (2010) Prediction and pathogenesis in type 1 diabetes. Immunity 32(4):468–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Atkinson MA, Eisenbarth GS (2001) Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 358(9277):221–229

    Article  CAS  PubMed  Google Scholar 

  3. Bottazzo GF, Florin-Christensen A, Doniach D (1974) Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet 2(7892):1279–1283

    Article  CAS  PubMed  Google Scholar 

  4. Lernmark A, Molenaar JL, van Beers WA, Yamaguchi Y, Nagataki S, Ludvigsson J et al (1991) The Fourth International Serum Exchange Workshop to standardize cytoplasmic islet cell antibodies. The Immunology and Diabetes Workshops and Participating Laboratories. Diabetologia 34(7):534–535

    Article  CAS  PubMed  Google Scholar 

  5. Baekkeskov S, Aanstoot HJ, Christgau S, Reetz A, Solimena M, Cascalho M et al (1990) Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic-acid decarboxylase. Nature 347(6289):151–156

    Article  CAS  PubMed  Google Scholar 

  6. Notkins AL, Lan MS, Leslie RDG (1998) IA-2 and IA-2 beta: the immune response in IDDM. Diabetes Metab Rev 14(1):85–93

    Article  CAS  PubMed  Google Scholar 

  7. Wenzlau JM, Juhl K, Yu L, Moua O, Sarkar SA, Gottlieb P et al (2007) The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci U S A 104(43):17040–17045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Palmer JP (1987) Insulin autoantibodies—their role in the pathogenesis of IDDM. Diabetes Metab Rev 3(4):1005–1015

    Article  CAS  PubMed  Google Scholar 

  9. Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ (1991) Two genes encode distinct glutamate decarboxylases. Neuron 7(1):91–100

    Article  CAS  PubMed  Google Scholar 

  10. Kim J, Richter W, Aanstoot HJ, Shi Y, Fu Q, Rajotte R et al (1993) Differential expression of GAD65 and GAD67 in human, rat, and mouse pancreatic islets. Diabetes 42(12):1799–1808

    Article  CAS  PubMed  Google Scholar 

  11. Kim J, Bang H, Ko S, Jung I, Hong H, Kim-Ha J (2008) Drosophila ia2 modulates secretion of insulin-like peptide. Comp Biochem Physiol A Mol Integr Physiol 151(2):180–184

    Article  PubMed  Google Scholar 

  12. Kubosaki A, Gross S, Miura J, Saeki K, Zhu M, Nakamura S et al (2004) Targeted disruption of the IA-2beta gene causes glucose intolerance and impairs insulin secretion but does not prevent the development of diabetes in NOD mice. Diabetes 53(7):1684–1691

    Article  CAS  PubMed  Google Scholar 

  13. Torii S, Saito N, Kawano A, Hou N, Ueki K, Kulkarni RN et al (2009) Gene silencing of phogrin unveils its essential role in glucose-responsive pancreatic beta-cell growth. Diabetes 58(3):682–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mziaut H, Kersting S, Knoch KP, Fan WH, Trajkovski M, Erdmann K et al (2008) ICA512 signaling enhances pancreatic beta-cell proliferation by regulating cyclins D through STATs. Proc Natl Acad Sci U S A 105(2):674–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dodson G, Steiner D (1998) The role of assembly in insulin’s biosynthesis. Curr Opin Struct Biol 8(2):189–194

    Article  CAS  PubMed  Google Scholar 

  16. Emdin SO, Dodson GG, Cutfield JM, Cutfield SM (1980) Role of zinc in insulin biosynthesis. Some possible zinc-insulin interactions in the pancreatic B-cell. Diabetologia 19(3):174–182

    Article  CAS  PubMed  Google Scholar 

  17. Chimienti F, Devergnas S, Favier A, Seve M (2004) Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53(9):2330–2337

    Article  CAS  PubMed  Google Scholar 

  18. Kawasaki E, Uga M, Nakamura K, Kuriya G, Satoh T, Fujishima K et al (2008) Association between anti-ZnT8 autoantibody specificities and SLC30A8 Arg325Trp variant in Japanese patients with type 1 diabetes. Diabetologia 51(12):2299–2302

    Article  CAS  PubMed  Google Scholar 

  19. Wenzlau JM, Liu Y, Yu L, Moua O, Fowler KT, Rangasamy S et al (2008) A common nonsynonymous single nucleotide polymorphism in the SLC30A8 gene determines ZnT8 autoantibody specificity in type 1 diabetes. Diabetes 57(10):2693–2697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wenzlau JM, Moua O, Liu Y, Eisenbarth GS, Hutton JC, Davidson HW (2008) Identification of a major humoral epitope in S1c30A8 (ZnT8). Ann N Y Acad Sci 1150:252–255

    Article  CAS  PubMed  Google Scholar 

  21. Bingley PJ, Bonifacio E, Ziegler AG, Schatz DA, Atkinson MA, Eisenbarth GS et al (2001) Proposed guidelines on screening for risk of type 1 diabetes. Diabetes Care 24(2):398

    Article  CAS  PubMed  Google Scholar 

  22. Wenzlau JM, Moua O, Sarkar SA, Yu L, Rewers M, Eisenbarth GS et al (2008) S1C30A8 is a major target of humoral autoimmunity in type 1 diabetes and a predictive marker in prediabetes. Ann N Y Acad Sci 1150:256–259

    Article  PubMed  Google Scholar 

  23. Bingley PJ, Christie MR, Bonifacio E, Bonfanti R, Shattock M, Fonte MT et al (1994) Combined analysis of autoantibodies improves prediction of IDDM in islet cell antibody-positive relatives. Diabetes 43(11):1304–1310

    Article  CAS  PubMed  Google Scholar 

  24. Schlosser M, Strebelow M, Rjasanowski I, Kerner W, Wassmuth R, Ziegler M (2004) Prevalence of diabetes-associated autoantibodies in schoolchildren: the Karlsburg Type 1 Diabetes Risk Study. Ann N Y Acad Sci 1037:114–117

    Article  CAS  PubMed  Google Scholar 

  25. Ziegler AG, Hummel M, Schenker M, Bonifacio E (1999) Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB Study. Diabetes 48(3):460–468

    Article  CAS  PubMed  Google Scholar 

  26. Hummel M, Bonifacio E, Schmid S, Walter M, Knopff A, Ziegler AG (2004) Brief communication: early appearance of islet autoantibodies predicts childhood type 1 diabetes in offspring of diabetic parents. Ann Intern Med 140(11):882–886

    Article  PubMed  Google Scholar 

  27. Parikka V, Nanto-Salonen K, Saarinen M, Simell T, Ilonen J, Hyoty H et al (2012) Early seroconversion and rapidly increasing autoantibody concentrations predict prepubertal manifestation of type 1 diabetes in children at genetic risk. Diabetologia 55(7):1926–1936

    Article  CAS  PubMed  Google Scholar 

  28. Achenbach P, Koczwara K, Knopff A, Naserke H, Ziegler AG, Bonifacio E (2004) Mature high-affinity immune responses to (pro)insulin anticipate the autoimmune cascade that leads to type 1 diabetes. J Clin Invest 114(4):589–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vardi P, Ziegler AG, Mathews JH, Dib S, Keller RJ, Ricker AT et al (1988) Concentration of insulin autoantibodies at onset of type-i diabetes—inverse log-linear correlation with age. Diabetes Care 11(9):736–739

    Article  CAS  PubMed  Google Scholar 

  30. Vandewalle CL, Falorni A, Svanholm S, Lernmark A, Pipeleers DG, Gorus FK et al (1995) High diagnostic sensitivity of glutamate-decarboxylase autoantibodies in insulin-dependent diabetes-mellitus with clinical onset between age 20 and 40 years. J Clin Endocrinol Metab 80(3):846–851

    CAS  PubMed  Google Scholar 

  31. Long AE, Gooneratne AT, Rokni S, Williams AJ, Bingley PJ (2012) The role of autoantibodies to zinc transporter 8 in prediction of type 1 diabetes in relatives: lessons from the European Nicotinamide Diabetes Intervention Trial (ENDIT) cohort. J Clin Endocrinol Metab 97(2):632–637

    Article  CAS  PubMed  Google Scholar 

  32. Decochez K, De Leeuw IH, Keymeulen B, Mathieu C, Rottiers R, Weets I et al (2002) IA-2 autoantibodies predict impending Type I diabetes in siblings of patients. Diabetologia 45(12):1658–1666

    Article  CAS  PubMed  Google Scholar 

  33. Brooking H, Ananieva-Jordanova R, Arnold C, Amoroso M, Powell M, Betterle C et al (2003) A sensitive non-isotopic assay for GAD(65) autoantibodies. Clin Chim Acta 331(1–2):55–59

    Article  CAS  PubMed  Google Scholar 

  34. Marcus P, Yan X, Bartley B, Hagopian W (2011) LIPS islet autoantibody assays in high-throughput format for DASP 2010. Diabetes Metab Res Rev 27(8):891–894

    Article  CAS  PubMed  Google Scholar 

  35. Burbelo PD, Ching KH, Mattson TL, Light JS, Bishop LR, Kovacs JA (2007) Rapid antibody quantification and generation of whole proteome antibody response profiles using LIPS (luciferase immunoprecipitation systems). Biochem Biophys Res Commun 352(4):889–895

    Article  CAS  PubMed  Google Scholar 

  36. Yu L, Miao D, Scrimgeour L, Johnson K, Rewers M, Eisenbarth GS (2012) Distinguishing persistent insulin autoantibodies with differential risk nonradioactive bivalent proinsulin/insulin autoantibody assay. Diabetes 61(1):179–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bonifacio E, Yu L, Williams AK, Eisenbarth GS, Bingley PJ, Marcovina SM et al (2010) Harmonization of glutamic acid decarboxylase and islet antigen-2 autoantibody assays for National Institute of Diabetes and Digestive and Kidney Diseases Consortia. J Clin Endocrinol Metab 95(7):3360–3367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Weenink SM, Lo J, Stephenson CR, McKinney PA, Ananieva-Jordanova R, Smith BR et al (2009) Autoantibodies and associated T-cell responses to determinants within the 831–860 region of the autoantigen IA-2 in Type 1 diabetes. J Autoimmun 33(2):147–154

    Article  CAS  PubMed  Google Scholar 

  39. Elvers KT, Geoghegan I, Shoemark DK, Lampasona V, Bingley PJ, Williams AJ (2013) The core cysteines, (C909) of islet antigen-2 and (C945) of islet antigen-2β, are crucial to autoantibody binding in type 1 diabetes. Diabetes 62(1):214–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Achenbach P, Warncke K, Reiter J, Naserke HE, Williams AJK, Bingley PJ et al (2004) Stratification of type 1 diabetes risk on the basis of islet autoantibody characteristics. Diabetes 53:384–392

    Article  CAS  PubMed  Google Scholar 

  41. Ronkainen MS, Hoppu S, Korhonen S, Simell S, Veijola R, Ilonen J et al (2006) Early epitope- and isotype-specific humoral immune responses to GAD65 in young children with genetic susceptibility to type 1 diabetes. Eur J Endocrinol 155(4):633–642

    Article  CAS  PubMed  Google Scholar 

  42. Mayr A, Schlosser M, Grober N, Kenk H, Ziegler AG, Bonifacio E et al (2007) GAD autoantibody affinity and epitope specificity identify distinct immunization profiles in children at risk for type 1 diabetes. Diabetes 56(6):1527–1533

    Article  CAS  PubMed  Google Scholar 

  43. Bottazzo GF, Gleichmann H (1986) Immunology and Diabetes Workshops: report of the first international workshop on the standardisation of cytoplasmic islet cell antibodies. Diabetologia 29:125–126

    Article  Google Scholar 

  44. Greenbaum CJ, Palmer JP, Kuglin B, Kolb H (1992) Insulin autoantibodies measured by radioimmunoassay methodology are more related to insulin-dependent diabetes-mellitus than those measured by enzyme-linked-immunosorbent-assay—results of the 4th international workshop on the standardization of insulin autoantibody measurement. J Clin Endocrinol Metab 74(5):1040–1044

    CAS  PubMed  Google Scholar 

  45. Bingley PJ, Bonifacio E, Mueller PW (2003) Diabetes Antibody Standardization Program: first assay proficiency evaluation. Diabetes 52(5):1128–1136

    Article  CAS  PubMed  Google Scholar 

  46. Lampasona V, Schlosser M, Mueller PW, Williams AJ, Wenzlau JM, Hutton JC et al (2011) Diabetes antibody standardization program: first proficiency evaluation of assays for autoantibodies to zinc transporter 8. Clin Chem 57(12):1693–1702

    Article  CAS  PubMed  Google Scholar 

  47. Schlosser M, Mueller PW, Törn C, Bonifacio E, Bingley PJ, Laboratories P (2010) Diabetes Antibody Standardization Program: evaluation of assays for insulin autoantibodies. Diabetologia 53(12):2611–2620

    Article  CAS  PubMed  Google Scholar 

  48. Achenbach P, Guo L-H, Gick C, Adler K, Krause S, Bonifacio E et al (2010) A simplified method to assess affinity of insulin autoantibodies. Clin Immunol 137(3):415–421

    Article  CAS  PubMed  Google Scholar 

  49. Curnock RM, Reed CR, Rokni S, Broadhurst JW, Bingley PJ, Williams AJ (2012) Insulin autoantibody affinity measurement using a single concentration of unlabelled insulin competitor discriminates risk in relatives of patients with type 1 diabetes. Clin Exp Immunol 167(1):67–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yu L, Dong F, Miao D, Fouts AR, Wenzlau JM, Steck AK (2013) Proinsulin/insulin autoantibodies measured with electrochemiluminescent assay are the earliest indicator of prediabetic islet autoimmunity. Diabetes Care 36(8):2266–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Miao D, Guyer KM, Dong F, Jiang L, Steck AK, Rewers M et al (2013) GAD65 autoantibodies detected by electrochemiluminescence assay identify high risk for type 1 diabetes. Diabetes 62(12):4174–4178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Williams AJK, Lampasona V, Wyatt R, Brigatti C, Gillespie KM, Bingley PJ et al (2015) Reactivity to N-terminally truncated GAD65(96-585) Identifies GAD autoantibodies that are more closely associated with diabetes progression in relatives of patients with type 1 diabetes. Diabetes 64:3247–3252

    Google Scholar 

  53. Petersen JS, Hejnaes KR, Moody A, Karlsen AE, Marshall MO, Hoiermadsen M et al (1994) Detection of GAD(65) antibodies in diabetes and other autoimmune-diseases using a simple radioligand assay. Diabetes 43(3):459–467

    Article  CAS  PubMed  Google Scholar 

  54. Yu LP, Robles DT, Abiru N, Kaur P, Rewers M, Kelemen K et al (2000) Early expression of antiinsulin autoantibodies of humans and the NOD mouse: evidence for early determination of subsequent diabetes. Proc Natl Acad Sci U S A 97(4):1701–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Williams AJ, Bingley PJ, Bonifacio E, Palmer JP, Gale EA (1997) A novel micro-assay for insulin autoantibodies. J Autoimmun 10(5):473–478

    Article  CAS  PubMed  Google Scholar 

  56. Naserke HE, Dozio N, Ziegler AG, Bonifacio E (1998) Comparison of a novel micro-assay for insulin autoantibodies with the conventional radiobinding assay. Diabetologia 41(6):681–683

    Article  CAS  PubMed  Google Scholar 

  57. Williams AJK, Norcross AJ, Chandler KA, Bingley PJ (2006) Non-specific binding to protein A Sepharose and protein G Sepharose in insulin autoantibody assays may be reduced by pre-treatment with glycine or ethanolamine. J Immunol Methods 314(1–2):170–173

    Article  CAS  PubMed  Google Scholar 

  58. Graham J, Hagopian WA, Kockum I, Li LS, Sanjeevi CB, Lowe RM et al (2002) Genetic effects on age-dependent onset and islet cell autoantibody markers in type 1 diabetes. Diabetes 51(5):1346–1355

    Article  CAS  PubMed  Google Scholar 

  59. Wenzlau JM, Walter M, Gardner TJ, Frisch LM, Yu L, Eisenbarth GS et al (2010) Kinetics of the post-onset decline in zinc transporter 8 autoantibodies in type 1 diabetic human subjects. J Clin Endocrinol Metab 95(10):4712–4719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Payton MA, Hawkes CJ, Christie MR (1995) Relationship of the 37,000-M(R) and 40,000-M(R) tryptic fragments of islet antigens in insulin-dependent diabetes to the protein-tyrosine phosphatase-like molecule IA-2 (ICA512). J Clin Invest 96(3):1506–1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wenzlau JM, Frisch LM, Hutton JC, Davidson HW (2011) Mapping of conformational autoantibody epitopes in ZNT8. Diabetes Metab Res Rev 27(8):883–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Williams AJK, Curnock R, Reed CR, Easton P, Rokni S, Bingley PJ (2010) Anti-BSA antibodies are a major cause of non-specific binding in insulin autoantibody radiobinding assays. J Immunol Methods 362(1-2):199–203

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alistair J. K. Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wyatt, R., Williams, A.J.K. (2015). Islet Autoantibody Analysis: Radioimmunoassays. In: Gillespie, K. (eds) Type-1 Diabetes. Methods in Molecular Biology, vol 1433. Humana Press, New York, NY. https://doi.org/10.1007/7651_2015_292

Download citation

  • DOI: https://doi.org/10.1007/7651_2015_292

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3641-0

  • Online ISBN: 978-1-4939-3643-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics