Skip to main content

Computational Biology Methods for Characterization of Pluripotent Cells

  • Protocol
  • First Online:
Induced Pluripotent Stem (iPS) Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1357))

Abstract

Pluripotent cells are a powerful tool for regenerative medicine and drug discovery. Several techniques have been developed to induce pluripotency, or to extract pluripotent cells from different tissues and biological fluids. However, the characterization of pluripotency requires tedious, expensive, time-consuming, and not always reliable wet-lab experiments; thus, an easy, standard quality-control protocol of pluripotency assessment remains to be established. Here to help comes the use of high-throughput techniques, and in particular, the employment of gene expression microarrays, which has become a complementary technique for cellular characterization. Research has shown that the transcriptomics comparison with an Embryonic Stem Cell (ESC) of reference is a good approach to assess the pluripotency. Under the premise that the best protocol is a computer software source code, here I propose and explain line by line a software protocol coded in R-Bioconductor for pluripotency assessment based on the comparison of transcriptomics data of pluripotent cells with an ESC of reference. I provide advice for experimental design, warning about possible pitfalls, and guides for results interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The directory separator is / or \ for Linux or Windows operating system, respectively.

  2. 2.

    The parameter pos is a position specifier for the text. If specified this overrides any adj value given. Values of 1, 2, 3, and 4, respectively, indicate positions below, to the left of, above, and to the right of the specified coordinates.

References

  1. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  2. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317

    Article  PubMed  CAS  Google Scholar 

  3. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  PubMed  CAS  Google Scholar 

  4. Kang L, Wu T, Tao Y, Yuan Y, He J, Zhang Y, Luo T, Kou Z, Gao S (2010) Viable mice produced from three-factor induced pluripotent stem (iPS) cells through tetraploid complementation. Cell Res 21(3):546–549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Araúzo-Bravo MJ, Ruau D, Han DW, Zenke M, Schöler HR (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454(7204):646–650

    Article  PubMed  CAS  Google Scholar 

  6. Kim JB, Greber B, Araúzo-Bravo MJ, Meyer J, Park KI, Zaehres H, Schöler HR (2009) Direct reprogramming of human neural stem cells by OCT4. Nature 461(7264):649–653

    Article  PubMed  CAS  Google Scholar 

  7. Feng B, Jiang J, Kraus P, Ng JH, Heng JCD, Chan YS, Yaw LP, Zhang W, Loh YH, Han J et al (2009) Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat Cell Biol 11(2):197–203

    Article  PubMed  CAS  Google Scholar 

  8. Chen J, Liu J, Yang J, Chen Y, Chen J, Ni S, Song H, Zeng L, Ding K, Pei D (2010) Bmps functionally replace Klf4 and support efficient reprogramming of mouse fibroblasts by Oct4 alone. Cell Res 21(1):205–212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Moon JH, Heo JS, Kim JS, Jun EK, Lee JH, Kim A, Kim J, Whang KY, Kang YK, Yeo S et al (2011) Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1. Cell Res 21(9):1305–1315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Maekawa M, Yamaguchi K, Nakamura T, Shibukawa R, Kodanaka I, Ichisaka T, Kawamura Y, Mochizuki H, Goshima N, Yamanaka S (2011) Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature 474(7350):225–229

    Article  PubMed  CAS  Google Scholar 

  11. Heng JCD, Feng B, Han J, Jiang J, Kraus P, Ng JH, Orlov YL, Huss M, Yang L, Lufkin T et al (2010) The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell 6(2):167–174

    Article  PubMed  CAS  Google Scholar 

  12. Ichida JK, Blanchard J, Lam K, Son EY, Chung JE, Egli D, Loh KM et al (2009) A small-molecule inhibitor of TGF-β signaling replaces Sox2 in reprogramming by inducing Nanog. Cell Stem Cell 5(5):491–503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ko K, Tapia N, Wu G, Kim JB, Araúzo-Bravo MJ, Sasse P, Glaser T, Ruau D, Han DW, Greber B, Hausdölrfer K, Sebastiano S, Stehling M, Fleischmann BK, Brülstle O, Zenke M, Schöller HR (2009) Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell 5(1):87–96

    Article  PubMed  CAS  Google Scholar 

  14. Singhal N, Graumann J, Wu G, Araúzo-Bravo MJ, Han DW, Greber B, Gentile L, Mann M, Schöler HR (2010) Chromatin-remodeling components of the Baf complex facilitate reprogramming. Cell 141(6):943–955

    Article  PubMed  CAS  Google Scholar 

  15. Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, Li W, Weng Z, Chen J, Ni S et al (2010) Vitamin c enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6(1):71–79

    Article  PubMed  CAS  Google Scholar 

  16. Liang G, He J, Zhang Y (2012) Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. Nat Cell Biol 14(5):457–466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Han J, Yuan P, Yang H, Zhang J, Soh BS, Li P, Lim SL, Cao S, Tay J, Orlov YL et al (2010) Tbx3 improves the germ-line competency of induced pluripotent stem cells. Nature 463(7284):1096–1100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hirata T, Amano T, Nakatake Y, Amano M, Piao Y, Hoang HG, Ko MSH (2012) Zscan4 transiently reactivates early embryonic genes during the generation of induced pluripotent stem cells. Sci Rep 2

    Google Scholar 

  19. Zhao X, Li W, Lv Z, Liu L, Tong M, Hai T, Hao J, Guo C, Ma Q, Wang L et al (2009) ips cells produce viable mice through tetraploid complementation. Nature 461(7260):86–90

    Article  PubMed  CAS  Google Scholar 

  20. In stem cell information. http://stemcells.nih.gov/research/registry/pluripotent_faq/. Accessed September 13, 2012

  21. Chan EM, Ratanasirintrawoot S, Park IH, Manos PD, Loh YH, Huo H, Miller JD, Hartung O, Rho J, Ince TA et al (2009) Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nat Biotechnol 27(11):1033–1037

    Article  PubMed  CAS  Google Scholar 

  22. Ko K, Araúzo-Bravo MJ, Tapia N, Kim J, Lin Q, Bernemann C, Han DW, Gentile L, Reinhardt P, Greber B, Schneider RK, Kliesch S, Zenke M, Schöller HR (2010) Human adult germline stem cells in question. Nature 465(7301):E1-E1

    Article  CAS  Google Scholar 

  23. Tapia N, Araúzo-Bravo MJ, Ko K, Schöler HR (2011) Concise review: challenging the pluripotency of human testis-derived esc-like cells. Stem Cells 29(8):1165–1169

    Article  PubMed  CAS  Google Scholar 

  24. Ko K, Reinhardt P, Tapia N, Schneider RK, Araúzo-Bravo MJ, Han DW, Greber B, Kim J, Kliesch S, Zenke M, Schöler HR (2011) Brief report: evaluating the potential of putative pluripotent cells derived from human testis. Stem Cells 29(8):1304–1309

    Article  PubMed  Google Scholar 

  25. Chin MH, Mason MJ, Xie W, Volinia S, Singer M, Peterson C, Ambartsumyan G, Aimiuwu O, Richter L, Zhang J et al (2009) Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5(1):111–123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD (2011) Reference maps of human es and ips cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144(3):439–452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ruiz S, Diep D, Gore A, Panopoulos AD, Montserrat N, Plongthongkum N, Kumar S, Fung HL, Giorgetti A, Bilic J, Batchelder EM, Zaehres H, Kan NG, Schöler HR, Mercola M, Zhang K, Izpisua Belmonte JC (2012) Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells. Proc Natl Acad Sci U S A 109:16196–16201

    Article  PubMed  PubMed Central  Google Scholar 

  28. Guenther MG, Frampton GM, Soldner F, Hockemeyer D, Mitalipova M, Jaenisch R, Young RA (2010) Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell 7(2):249–257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Chin MH, Pellegrini M, Plath K, Lowry WE (2010) Molecular analyses of human induced pluripotent stem cells and embryonic stem cells. Cell Stem Cell 7(2):263–269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  PubMed  CAS  Google Scholar 

  31. Smith AG (2001) Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 17:435–462

    Article  PubMed  CAS  Google Scholar 

  32. Brons I, Smithers L, Trotter M, Gunn PR, Sun B, de Sousa S, Howlett S, Clarkson A, Richter LA, Pedersen R, Vallier L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195

    Article  PubMed  CAS  Google Scholar 

  33. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RDG (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448(7150):196–199

    Article  PubMed  CAS  Google Scholar 

  34. Nichols J, Smith AG (2009) Naive and primed pluripotent states. Cell Stem Cell 4:487–492

    Article  PubMed  CAS  Google Scholar 

  35. Guo G, Yang J, Nichols J, Hall JS, Eyres I, Manseld W, Smith A (2009) Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 136(7):1063–1069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Vallier L, Touboul T, Chng Z, Brimpari M, Hannan N, Millan E, Smithers LE, Trotter M, Rugg-Gunn P, Weber A, Pedersen RA (2009) Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signalling pathways. PLoS One 4(6):e6082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Han DW, Tapia N, Joo JY, Greber B, Araúzo-Bravo MJ, Bernemann C, Ko K, Wu G, Stehling M, Do JT, Schöler HR (2010) Epiblast stem cell subpopulations represent mouse embryos of distinct pregastrulation stages. Cell 143(4):617–627

    Article  PubMed  CAS  Google Scholar 

  38. Han DW, Greber B, Wu G, Tapia N, Araúzo-Bravo MJ, Ko K, Bernemann C, Stehling M, Schöler HR (2011) Direct reprogramming of fibroblasts into epiblast stem cell. Nat Cell Biol 13(1):66–71

    Article  PubMed  CAS  Google Scholar 

  39. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of affymetrix GeneChip probe level data. Nucleic Acids Res 31(4), e15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kim JB, Sebastiano V, Wu G, Araúzo-Bravo MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, van den Boom D, Meyer J, Hübner K, Bernemann C, Ortmeier C, Zenke M, Fleischmann BK, Zaehres H, Schöler HR (2009) Oct4-induced pluripotency in adult neural stem cells. Cell 136(3):411–419

    Article  PubMed  CAS  Google Scholar 

  41. Ko K, Wu G, Araúzo-Bravo MJ, Kim J, Francine J, Greber B, Mühlisch J, Joo JY, Sabour D, Frühwald MC, Tapia N, Schöler HR (2011) Autologous pluripotent stem cells generated from adult mouse testicular biopsy. Stem Cell Rev 8(2):435–444

    Article  Google Scholar 

  42. Ko K, Araúzo-Bravo MJ, Kim J, Stehling M, Schöler HR (2010) Conversion of adult mouse unipotent germline stem cells into pluripotent stem cells. Nat Protoc 5(5):921–928

    Article  PubMed  CAS  Google Scholar 

  43. Do JT, Joo JY, Han DW, Araúzo-Bravo MJ, Kim MJ, Greber B, Zaehres H, Sobek-Klocke I, Chung HM, Schöler HR (2009) Generation of parthenogenetic iPS cells from parthenogenetic neural stem cells. Stem Cells 27(12):2962–2968

    PubMed  CAS  Google Scholar 

  44. Kim JB, Zaehres H, Araúzo-Bravo MJ, Schöler HR (2009) Generation of induced pluripotent stem cells from neural stem cells. Nat Protoc 4(10):1464–1470

    Article  PubMed  CAS  Google Scholar 

  45. Zaehres H, Kögler G, Araúzo-Bravo MJ, Bleidissel M, Santourlidis S, Weinhold S, Greber B, Kim JB, Buchheiser A, Liedtke S, Graffmann N, Zhao X, Meyer J, Reinhardt P, Burr B, Waclawczyk S, Ortmeier C, Uhrberg M, Schöler HR, Cantz T, Wernet P (2010) Induction of pluripotency in human cord blood unrestricted somatic stem cells. Exp Hematol 38(9):809–818

    Article  PubMed  CAS  Google Scholar 

  46. Conrad S, Renninger M, Hennenlotter J, Wiesner T, Just L, Bonin M, Aicher W, Bühring HJ, Mattheus U, Mack A, Wagner HJ, Minger S, Matzkies M, Reppel M, Hescheler J, Sievert KD, Stenz A, Skutella T (2008) Generation of pluripotent stem cells from adult human testis. Nature 456:344–349

    Article  PubMed  CAS  Google Scholar 

  47. Luu PL, Schöler HR, Araúzo-Bravo MJ (2013) Disclosing the crosstalk among DNA methylation, transcription factors, and histone marks in human pluripotent cells through discovery of DNA methylation motifs. Genome Res 23(12):2013–2029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Basque Country Foundation of Science (Ikerbasque).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos J. Araúzo-Bravo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Araúzo-Bravo, M.J. (2015). Computational Biology Methods for Characterization of Pluripotent Cells. In: Turksen, K., Nagy, A. (eds) Induced Pluripotent Stem (iPS) Cells. Methods in Molecular Biology, vol 1357. Humana Press, New York, NY. https://doi.org/10.1007/7651_2015_279

Download citation

  • DOI: https://doi.org/10.1007/7651_2015_279

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3054-8

  • Online ISBN: 978-1-4939-3055-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics