Advertisement

Quantitative Analysis of Intra-chromosomal Contacts: The 3C-qPCR Method

  • Vuthy Ea
  • Franck Court
  • Thierry FornéEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1589)

Abstract

The chromosome conformation capture (3C) technique is fundamental to many population-based methods investigating chromatin dynamics and organization in eukaryotes. Here, we provide a modified quantitative 3C (3C-qPCR) protocol for improved quantitative analyses of intra-chromosomal contacts. We also describe an algorithm for data normalization which allows more accurate comparisons between contact profiles.

Keywords:

Chromosome conformation capture Chromatin dynamics and organization Quantitative PCR 

Notes

Acknowledgement

This work was supported by grants from the Institut National du Cancer [contract N° INCa_5960, PLBIO 2012-129, to T.F.], the Association pour la Recherche contre le Cancer [ARC contract n°SFI20101201555 to T.F.], the Ligue contre le cancer (comité Hérault), and the Centre National de la Recherche Scientifique (CNRS).

References

  1. 1.
    Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295:1306–1311CrossRefPubMedGoogle Scholar
  2. 2.
    Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA, Rubio ED, Krumm A, Lamb J, Nusbaum C, Green RD, Dekker J (2006) Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16:1299–1309CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38:1348–1354CrossRefPubMedGoogle Scholar
  4. 4.
    Zhao Z, Tavoosidana G, Sjolinder M, Gondor A, Mariano P, Wang S, Kanduri C, Lezcano M, Sandhu KS, Singh U, Pant V, Tiwari V, Kurukuti S, Ohlsson R (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38:1341–1347CrossRefPubMedGoogle Scholar
  5. 5.
    Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ, Lee C, Shendure J, Fields S, Blau CA, Noble WS (2010) A three-dimensional model of the yeast genome. Nature 465:363–367CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay A, Cavalli G (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148:458–472CrossRefPubMedGoogle Scholar
  7. 7.
    Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hagège H, Klous P, Braem C, Splinter E, Dekker J, Cathala G, de Laat W, Forné T (2007) Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat Protoc 2:1722–1733CrossRefPubMedGoogle Scholar
  10. 10.
    Court F, Miro J, Braem C, Lelay-Taha M-N, Brisebarre A, Atger F, Gostan T, Weber M, Cathala G, Forné T (2011) Modulated contact frequencies at gene-rich loci support a statistical helix model for mammalian chromatin organization. Genome Biol 12:R42CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Court F, Baniol M, Hagège H, Petit JS, Lelay-Taha M-N, Carbonell F, Weber M, Cathala G, Forné T (2011) Long-range chromatin interactions at the mouse Igf2/H19 locus reveal a novel paternally expressed long non-coding RNA. Nucleic Acids Res 39:5893–5906CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Braem C, Recolin B, Rancourt RC, Angiolini C, Barthes P, Branchu P, Court F, Cathala G, Ferguson-Smith AC, Forné T (2008) Genomic matrix attachment region and chromosome conformation capture quantitative real time PCR assays identify novel putative regulatory elements at the imprinted Dlk1/Gtl2 locus. J Biol Chem 283:18612–18620CrossRefPubMedGoogle Scholar
  13. 13.
    Lutfalla G, Uzé G (2006) Performing quantitative reverse-transcribed polymerase chain reaction experiments. Methods Enzymol 410:386–400CrossRefPubMedGoogle Scholar
  14. 14.
    Milligan L, Antoine E, Bisbal C, Weber M, Brunel C, Forné T, Cathala G (2000) H19 gene expression is up-regulated exclusively by stabilization of the RNA during muscle cell differentiation. Oncogene 19:5810–5816CrossRefPubMedGoogle Scholar
  15. 15.
    Milligan L, Forné T, Antoine E, Weber M, Hemonnot B, Dandolo L, Brunel C, Cathala G (2002) Turnover of primary transcripts is a major step in the regulation of mouse H19 gene expression. EMBO Rep 3:774–779CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Weber M, Hagège H, Lutfalla G, Dandolo L, Brunel C, Cathala G, Forné T (2003) A real-time polymerase chain reaction assay for quantification of allele ratios and correction of amplification bias. Anal Biochem 320:252–258CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institut de Génétique Moléculaire de Montpellier, UMR5535, CNRSUniversité de MontpellierMontpellier Cedex 5France
  2. 2.Inserm UMR1103, CNRS UMR6293, F-63001 Clermont-Ferrand, France and Clermont UniversitéUniversité d’Auvergne, Laboratoire GReDClermont-FerrandFrance

Personalised recommendations