Skip to main content

Analysis of Imprinted Gene Regulation

  • Protocol
  • First Online:
Book cover Population Epigenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1589))

Abstract

Genetic studies have been well established for identifying sequence variants associated with phenotypes. With the expanding field of epigenetics, and the growing understanding of epigenetic regulation of gene expression, similar studies can be undertaken to also define associations between epigenetic variation and phenotypes. Of particular interest are imprinted genes, which have parent-of-origin specific regulation and expression, and are key regulators of early development. Herein, we describe methods for examining epigenetic regulation by the two major hallmarks of imprinted genes: differentially methylated regions (DMRs), regulatory DNA sequences with allele specific methylation; and monoallelic expression, the silencing and transcription of opposite alleles in a parent-of-origin specific manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Court F, Martin-Trujillo A, Romanelli V et al (2013) Genome-wide allelic methylation analysis reveals disease-specific susceptibility to multiple methylation defects in imprinting syndromes. Hum Mutat 34:595–602

    CAS  PubMed  Google Scholar 

  2. Docherty LE, Rezwan FI, Poole RL et al (2014) Genome-wide DNA methylation analysis of patients with imprinting disorders identifies differentially methylated regions associated with novel candidate imprinted genes. J Med Genet 51:229–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Horsthemke B (2014) In brief: genomic imprinting and imprinting diseases. J Pathol 232:485–487

    Article  CAS  PubMed  Google Scholar 

  4. Girardot M, Feil R, Lleres D (2013) Epigenetic deregulation of genomic imprinting in humans: causal mechanisms and clinical implications. Epigenomics 5:715–728

    Article  CAS  PubMed  Google Scholar 

  5. Rozek LS, Dolinoy DC, Sartor MA et al (2014) Epigenetics: relevance and implications for public health. Annu Rev Public Health 35:105–122

    Article  PubMed  PubMed Central  Google Scholar 

  6. Murphy SK, Adigun A, Huang Z et al (2011) Gender-specific methylation differences in relation to prenatal exposure to cigarette smoke. Gene 494:36–43

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cooper WN, Khulan B, Owens S et al (2012) DNA methylation profiling at imprinted loci after periconceptional micronutrient supplementation in humans: results of a pilot randomized controlled trial. FASEB J 26:1782–1790

    Article  CAS  PubMed  Google Scholar 

  8. Murphy SK, Huang Z, Hoyo C (2012) Differentially methylated regions of imprinted genes in prenatal, perinatal and postnatal human tissues. PLoS One 7, e40924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Piepenburg O, Williams CH, Stemple DL et al (2006) DNA detection using recombination proteins. PLoS Biol 4, e204

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wojdacz TK, Hansen LL, Dobrovic A (2008) A new approach to primer design for the control of PCR bias in methylation studies. BMC Res Notes 1:54

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shen L, Guo Y, Chen X et al (2007) Optimizing annealing temperature overcomes bias in bisulfite PCR methylation analysis. Biotechniques 42:48–58

    Article  CAS  PubMed  Google Scholar 

  12. Moskalev EA, Zavgorodnij MG, Majorova SP et al (2011) Correction of PCR-bias in quantitative DNA methylation studies by means of cubic polynomial regression. Nucleic Acids Res 39, e77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc 1:581–585

    Article  CAS  PubMed  Google Scholar 

  14. Pinto FL, Svensson H, Lindblad P (2006) Generation of non-genomic oligonucleotide tag sequences for RNA template-specific PCR. BMC Biotechnol 6:31

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Skaar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Skaar, D.A., Jirtle, R.L. (2015). Analysis of Imprinted Gene Regulation. In: Haggarty, P., Harrison, K. (eds) Population Epigenetics. Methods in Molecular Biology, vol 1589. Humana Press, New York, NY. https://doi.org/10.1007/7651_2015_264

Download citation

  • DOI: https://doi.org/10.1007/7651_2015_264

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6901-2

  • Online ISBN: 978-1-4939-6903-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics