Skip to main content

Maximizing Clonal Embryonic Stem Cell Derivation by ERK Pathway Inhibition

  • Protocol
  • First Online:
Embryonic Stem Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1341))

Abstract

Since the development of inhibitor-based defined culture conditions (known as “2i”), multiple clonal embryonic stem cell (ESC) lines can be readily derived from single cells isolated directly from mouse embryos. In addition to providing an efficient means to generate ES cells from compound transgenic or murine disease models on any genetic background, this technology can be used to investigate the process of ESC derivation at both a functional and molecular level. Here, we provide details of the procedure for both maximizing the number of cells in the donor tissue and subsequent effective derivation of multiple clonal ES cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  CAS  PubMed  Google Scholar 

  2. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78(12):7634–7638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Brook FA, Gardner RL (1997) The origin and efficient derivation of embryonic stem cells in the mouse. Proc Natl Acad Sci U S A 94(11):5709–5712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bradley A, Evans M et al (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309(5965):255–256

    Article  CAS  PubMed  Google Scholar 

  5. Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4(6):487–492

    Article  CAS  PubMed  Google Scholar 

  6. Smith AG, Heath JK et al (1988) Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336(6200):688–690

    Article  CAS  PubMed  Google Scholar 

  7. Williams RL, Hilton DJ et al (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336(6200):684–687

    Article  CAS  PubMed  Google Scholar 

  8. Kunath T, Saba-El-Leil MK et al (2007) FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 134(16):2895–2902

    Article  CAS  PubMed  Google Scholar 

  9. Ying QL, Wray J et al (2008) The ground state of embryonic stem cell self-renewal. Nature 453(7194):519–523

    Article  CAS  PubMed  Google Scholar 

  10. Wray J, Kalkan T et al (2010) The ground state of pluripotency. Biochem Soc Trans 38(4):1027–1032

    Article  CAS  PubMed  Google Scholar 

  11. Wray J, Kalkan T et al (2011) Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nat Cell Biol 13(7):838–845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Dunn SJ, Martello G et al (2014) Defining an essential transcription factor program for naive pluripotency. Science 344(6188):1156–1160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Martello G, Sugimoto T et al (2012) Esrrb is a pivotal target of the Gsk3/Tcf3 axis regulating embryonic stem cell self-renewal. Cell Stem Cell 11(4):491–504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Bourillot PY, Aksoy I et al (2009) Novel STAT3 target genes exert distinct roles in the inhibition of mesoderm and endoderm differentiation in cooperation with Nanog. Stem Cells 27(8):1760–1771

    Article  CAS  PubMed  Google Scholar 

  15. Martello G, Bertone P, Smith A (2013) Identification of the missing pluripotency factor downstream of leukaemia inhibitory factor. EMBO J 32(19):2561–2574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ye S, Li P et al (2013) Embryonic stem cell self-renewal pathways converge on the transcription factor Tfcp2l1. EMBO J 32(19):2548–2560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Marks H, Kalkan T et al (2012) The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149(3):590–604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Boroviak T, Loos R et al (2014) The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification. Nat Cell Biol 16(6):516–528

    Article  CAS  PubMed  Google Scholar 

  19. Buehr M, Meek S et al (2008) Capture of authentic embryonic stem cells from rat blastocysts. Cell 135(7):1287–1298

    Article  CAS  PubMed  Google Scholar 

  20. Li P, Tong C et al (2008) Germline competent embryonic stem cells derived from rat blastocysts. Cell 135(7):1299–1310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hanna J, Markoulaki S et al (2009) Metastable pluripotent states in NOD-mouse-derived ESCs. Cell Stem Cell 4(6):513–524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Nichols J, Jones K et al (2009) Validated germline-competent embryonic stem cell lines from nonobese diabetic mice. Nat Med 15(7):814–818

    Article  CAS  PubMed  Google Scholar 

  23. Nichols J, Silva J et al (2009) Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development 136(19):3215–3222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Plusa B, Piliszek A et al (2008) Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135(18):3081–3091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Ohnishi Y, Huber W et al (2014) Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages. Nat Cell Biol 16(1):27–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Grabarek JB, Zyzynska K et al (2012) Differential plasticity of epiblast and primitive endoderm precursors within the ICM of the early mouse embryo. Development 139(1):129–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Rappolee DA, Basilico C et al (1994) Expression and function of FGF-4 in peri-implantation development in mouse embryos. Development 120(8):2259–2269

    CAS  PubMed  Google Scholar 

  28. Arman E, Haffner-Krausz R et al (1998) Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc Natl Acad Sci U S A 95(9):5082–5087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Guo G, Huss M et al (2010) Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell 18(4):675–685

    Article  CAS  PubMed  Google Scholar 

  30. Yamanaka Y, Lanner F et al (2010) FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 137(5):715–724

    Article  CAS  PubMed  Google Scholar 

  31. Solter D, Knowles BB (1975) Immunosurgery of mouse blastocyst. Proc Natl Acad Sci U S A 72(12):5099–5102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Nichols .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nichols, J., Boroviak, T. (2015). Maximizing Clonal Embryonic Stem Cell Derivation by ERK Pathway Inhibition. In: Turksen, K. (eds) Embryonic Stem Cell Protocols. Methods in Molecular Biology, vol 1341. Humana Press, New York, NY. https://doi.org/10.1007/7651_2015_253

Download citation

  • DOI: https://doi.org/10.1007/7651_2015_253

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2953-5

  • Online ISBN: 978-1-4939-2954-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics