Skip to main content

A Protocol to Collect Specific Mouse Skeletal Muscles for Metabolomics Studies

  • Protocol
  • First Online:
Book cover Microarray Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1375))

Abstract

Due to the highly sensitive nature of metabolic states, the quality of metabolomics data depends on the suitability of the experimental procedure. Metabolism could be affected by factors such as the method of euthanasia of the animals and the sample collection procedures. The effects of these factors on metabolites are tissue-specific. Thus, it is important to select proper methods to sacrifice the animal and appropriate procedures for collecting samples specific to the tissue of interest. Here, we present our protocol to collect specific mouse skeletal muscles with different fiber types for metabolomics studies. We also provide a protocol to measure lactate levels in tissue samples as a way to estimate the metabolic state in collected samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mizunoya W, Wakamatsu J, Tatsumi R et al (2008) Protocol for high-resolution separation of rodent myosin heavy chain isoforms in a mini-gel electrophoresis system. Anal Biochem 377(1):111–113

    Article  CAS  PubMed  Google Scholar 

  2. Fiehn O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol 48(1–2):155–171

    Article  CAS  PubMed  Google Scholar 

  3. Noack S, Wiechert W (2014) Quantitative metabolomics: a phantom? Trends Biotechnol 32(5):238–244

    Article  CAS  PubMed  Google Scholar 

  4. Evans CA, Kerkut GA (1981) Effect of nembutal anesthesia, electric shock, and shock avoidance conditioning on acetylcholinesterase activity and protein content in various regions of the rat brain. Neurosci Behav Physiol 11(6):614–620

    Article  CAS  PubMed  Google Scholar 

  5. Marquez-Julio A, French IW (1967) The effect of ether, pentobarbital, and decapitation on various metabolites of rat skeletal muscle. Can J Biochem 45(9):1323–1327

    Article  CAS  PubMed  Google Scholar 

  6. Pence HH, Pence S, Kurtul N et al (2003) The alterations in adenosine nucleotides and lactic acid levels in striated muscles following death with cervical dislocation or electric shock. Soud Lek 48(1):8–11

    PubMed  Google Scholar 

  7. Rezin GT, Goncalves CL, Daufenbach JF et al (2009) Acute administration of ketamine reverses the inhibition of mitochondrial respiratory chain induced by chronic mild stress. Brain Res Bull 79(6):418–421

    Article  CAS  PubMed  Google Scholar 

  8. Chang Y, Chen TL, Sheu JR et al (2005) Suppressive effects of ketamine on macrophage functions. Toxicol Appl Pharmacol 204(1):27–35

    Article  CAS  PubMed  Google Scholar 

  9. de Oliveira L, Fraga DB, De Luca RD et al (2011) Behavioral changes and mitochondrial dysfunction in a rat model of schizophrenia induced by ketamine. Metab Brain Dis 26(1):69–77

    Article  PubMed  Google Scholar 

  10. Pravdic D, Hirata N, Barber L et al (2012) Complex I and ATP synthase mediate membrane depolarization and matrix acidification by isoflurane in mitochondria. Eur J Pharmacol 690(1–3):149–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang Y, Xu Z, Wang H et al (2012) Anesthetics isoflurane and desflurane differently affect mitochondrial function, learning, and memory. Ann Neurol 71(5):687–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kohro S, Hogan QH, Nakae Y et al (2001) Anesthetic effects on mitochondrial ATP-sensitive K channel. Anesthesiology 95(6):1435–1440

    Article  CAS  PubMed  Google Scholar 

  13. Braun S, Gaza N, Werdehausen R et al (2010) Ketamine induces apoptosis via the mitochondrial pathway in human lymphocytes and neuronal cells. Br J Anaesth 105(3):347–354

    Article  CAS  PubMed  Google Scholar 

  14. Takaki M, Nakahara H, Kawatani Y et al (1997) No suppression of respiratory function of mitochondrial isolated from the hearts of anesthetized rats with high-dose pentobarbital sodium. Jpn J Physiol 47(1):87–92

    Article  CAS  PubMed  Google Scholar 

  15. Du F, Zhang Y, Iltis I et al (2009) In vivo proton MRS to quantify anesthetic effects of pentobarbital on cerebral metabolism and brain activity in rat. Magn Reson Med 62(6):1385–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yamamoto Y, Hasegawa H, Ikeda K et al (1988) Cervical dislocation of mice induces rapid accumulation of platelet serotonin in the lung. Agents Actions 25(1–2):48–56

    Article  CAS  PubMed  Google Scholar 

  17. Fischer JC, Ruitenbeek W, Stadhouders AM et al (1985) Investigation of mitochondrial metabolism in small human skeletal muscle biopsy specimens. Improvement of preparation procedure. Clin Chim Acta 145(1):89–99

    Article  CAS  PubMed  Google Scholar 

  18. Boros-Hatfaludy S, Fekete G, Apor P (1986) Metabolic enzyme activity patterns in muscle biopsy samples in different athletes. Eur J Appl Physiol Occup Physiol 55(3):334–338

    Article  CAS  PubMed  Google Scholar 

  19. Bergstrom J (1975) Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest 35(7):609–616

    Article  CAS  PubMed  Google Scholar 

  20. Antal C, Teletin M, Wendling O et al (2007) Tissue collection for systematic phenotyping in the mouse. Curr Protoc Mol Biol Chapter 29:Unit 29A 24

    Google Scholar 

  21. Winder WW, Fuller EO, Conlee RK (1983) Adrenal hormones and liver cAMP in exercising rats – different modes of anesthesia. J Appl Physiol Respir Environ Exerc Physiol 55(5):1634–1636

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Grant NIH/NHLBI 1P01HL098053 supported this manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuohui Gan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gan, Z., Fu, Z., Stowe, J.C., Powell, F.L., McCulloch, A.D. (2015). A Protocol to Collect Specific Mouse Skeletal Muscles for Metabolomics Studies. In: Guzzi, P. (eds) Microarray Data Analysis. Methods in Molecular Biology, vol 1375. Humana Press, New York, NY. https://doi.org/10.1007/7651_2015_248

Download citation

  • DOI: https://doi.org/10.1007/7651_2015_248

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3172-9

  • Online ISBN: 978-1-4939-3173-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics