Skip to main content

In Vitro Differentiation of Embryonic Stem Cells into Hematopoietic Lineage: Towards Erythroid Progenitor’s Production

  • Protocol
  • First Online:
Embryonic Stem Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1341))

Abstract

Embryonic stem cells (ESCs) differentiation via embryoid body (EB) formation is an established method that generates the three germ layers. However, EB differentiation poses several problems including formation of heterogeneous cell populations. Herein, we described a differentiation protocol on enhancing mesoderm derivation from murine ESCs (mESCs) using conditioned medium (CM) from HepG2 cells. We used this technique to direct hematopoiesis by generating “embryoid-like” colonies (ELCs) from murine (m) ESCs without following standard formation of EBs. Our CM-mESCs group yielded an almost fivefold increase in ELC formation (p ≤ 0.05) and higher expression of mesoderm genes;-Brachyury-T, Goosecoid, and Flk-1 compared with control mESCs group. Hematopoietic colony formation from CM-mESCs was also enhanced by twofold at days 7 and 14 with earlier colony commitment compared to control mESCs (p ≤ 0.05). This early clonogenic capacity was confirmed morphologically by the presence of nucleated erythrocytes and macrophages as early as day 7 in culture using standard 14-day colony-forming assay. Early expression of hematopoietic primitive (ζ-globin) and definitive (β-globin) erythroid genes and proteins was also observed by day 7 in the CM-treated culture. These data indicate that hematopoietic cells more quickly differentiate from CM-treated, compared with those using standard EB approaches, and provide an efficient bioprocess platform for erythroid-specific differentiation of ESCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    *Keller et al. 1993 has reported that ESCs efficiently undergo differentiation in vitro to mesoderm and hematopoietic cells that this in vitro system recapitulates day 6.5 to 7.5 of mouse hematopoietic development. Embryonic stem cells differentiated as embryoid bodies (EBs) develop erythroid precursors by day 4 of differentiations, and by day 6, more than 85% of EBs contain such cells. The number of the EPO responsive precursors increased by day 8 of differentiation, them remained constant, and finally began to decline by day by day 12. Therefore, we hypothesized that day 5-8 are the period of mesoderm differentation in EB to recapitulate embryonic development based on the previous study reported.

    Reference ammended: 3(a). Irion S, Clarke RL, Luche H, Kim I, Morrison SJ, Fehling HJ, Keller GM (2010) Temporal specification of blood progenitors from mouse embryonic stem cells and induced pluripotent stem cells. Development 137(17):2829–2839. doi:10.1242/dev.0421193 (b). Keller GM, Kennedy M, Papayannopoulou T, Wiles MV (1993) Hemataopoietic commitment during embryonic stem cell differentiation in culture. Mol and Cell Biol: 473–486.

References

  1. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  CAS  PubMed  Google Scholar 

  2. Kennedy M, Firpo M, Choi K, Wall C, Robertson S, Kabrun N, Keller G (1997) A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature 386(6624):488–493. doi:10.1038/386488a0

    Article  CAS  PubMed  Google Scholar 

  3. Irion S, Clarke RL, Luche H, Kim I, Morrison SJ, Fehling HJ, Keller GM (2010) Temporal specification of blood progenitors from mouse embryonic stem cells and induced pluripotent stem cells. Development 137(17):2829–2839. doi:10.1242/dev.042119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Placzek MR, Chung IM, Macedo HM, Ismail S, Mortera Blanco T, Lim M, Cha JM, Fauzi I, Kang Y, Yeo DC, Ma CY, Polak JM, Panoskaltsis N, Mantalaris A (2009) Stem cell bioprocessing: fundamentals and principles. J R Soc Interface 6(32):209–232. doi:10.1098/rsif.2008.0442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Hwang YS, Randle WL, Bielby RC, Polak JM, Mantalaris A (2006) Enhanced derivation of osteogenic cells from murine embryonic stem cells after treatment with HepG2-conditioned medium and modulation of the embryoid body formation period: application to skeletal tissue engineering. Tissue Eng 12(6):1381–1392. doi:10.1089/ten.2006.12.1381

    Article  CAS  PubMed  Google Scholar 

  6. Zhang WJ, Park C, Arentson E, Choi K (2005) Modulation of hematopoietic and endothelial cell differentiation from mouse embryonic stem cells by different culture conditions. Blood 105(1):111–114. doi:10.1182/blood-2004-04-1306

    Article  CAS  PubMed  Google Scholar 

  7. Bielinska M, Narita N, Heikinheimo M, Porter SB, Wilson DB (1996) Erythropoiesis and vasculogenesis in embryoid bodies lacking visceral yolk sac endoderm. Blood 88(10):3720–3730

    CAS  PubMed  Google Scholar 

  8. Eilken HM, Nishikawa S, Schroeder T (2009) Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature 457(7231):896–900. doi:10.1038/nature07760

    Article  CAS  PubMed  Google Scholar 

  9. Kouskoff V, Lacaud G, Schwantz S, Fehling HJ, Keller G (2005) Sequential development of hematopoietic and cardiac mesoderm during embryonic stem cell differentiation. Proc Natl Acad Sci U S A 102(37):13170–13175. doi:10.1073/pnas.0501672102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Pick M, Azzola L, Mossman A, Stanley EG, Elefanty AG (2007) Differentiation of human embryonic stem cells in serum-free medium reveals distinct roles for bone morphogenetic protein 4, vascular endothelial growth factor, stem cell factor, and fibroblast growth factor 2 in hematopoiesis. Stem Cells 25(9):2206–2214. doi:10.1634/stemcells.2006-0713

    Article  CAS  PubMed  Google Scholar 

  11. Lu SJ, Feng Q, Park JS, Vida L, Lee BS, Strausbauch M, Wettstein PJ, Honig GR, Lanza R (2008) Biologic properties and enucleation of red blood cells from human embryonic stem cells. Blood 112(12):4475–4484. doi:10.1182/blood-2008-05-157198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Kennedy M, D'Souza SL, Lynch-Kattman M, Schwantz S, Keller G (2007) Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood 109(7):2679–2687. doi:10.1182/blood-2006-09-047704

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Lapillonne H, Kobari L, Mazurier C, Tropel P, Giarratana MC, Zanella-Cleon I, Kiger L, Wattenhofer-Donze M, Puccio H, Hebert N, Francina A, Andreu G, Viville S, Douay L (2010) Red blood cell generation from human induced pluripotent stem cells: perspectives for transfusion medicine. Haematologica 95(10):1651–1659. doi:10.3324/haematol.2010.023556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Ma F, Ebihara Y, Umeda K, Sakai H, Hanada S, Zhang H, Zaike Y, Tsuchida E, Nakahata T, Nakauchi H, Tsuji K (2008) Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proc Natl Acad Sci U S A 105(35):13087–13092. doi:10.1073/pnas.0802220105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hiroyama T, Miharada K, Sudo K, Danjo I, Aoki N, Nakamura Y (2008) Establishment of mouse embryonic stem cell-derived erythroid progenitor cell lines able to produce functional red blood cells. PLoS One 3(2):e1544. doi:10.1371/journal.pone.0001544

    Article  PubMed Central  PubMed  Google Scholar 

  16. Ji J, Vijayaragavan K, Bosse M, Menendez P, Weisel K, Bhatia M (2008) OP9 stroma augments survival of hematopoietic precursors and progenitors during hematopoietic differentiation from human embryonic stem cells. Stem Cells 26(10):2485–2495. doi:10.1634/stemcells.2008-0642

    Article  CAS  PubMed  Google Scholar 

  17. Heng BC, Cao T, Haider HK, Wang DZ, Sim EK, Ng SC (2004) An overview and synopsis of techniques for directing stem cell differentiation in vitro. Cell Tissue Res 315(3):291–303. doi:10.1007/s00441-003-0847-5

    Article  PubMed  Google Scholar 

  18. Willems E, Leyns L (2008) Patterning of mouse embryonic stem cell-derived pan-mesoderm by Activin A/Nodal and Bmp4 signaling requires Fibroblast Growth Factor activity. Differentiation 76(7):745–759. doi:10.1111/j.1432-0436.2007.00257.x

    Article  CAS  PubMed  Google Scholar 

  19. Rathjen J, Lake JA, Bettess MD, Washington JM, Chapman G, Rathjen PD (1999) Formation of a primitive ectoderm like cell population, EPL cells, from ES cells in response to biologically derived factors. J Cell Sci 112(Pt 5):601–612

    CAS  PubMed  Google Scholar 

  20. Rathjen J, Haines BP, Hudson KM, Nesci A, Dunn S, Rathjen PD (2002) Directed differentiation of pluripotent cells to neural lineages: homogeneous formation and differentiation of a neurectoderm population. Development 129(11):2649–2661

    CAS  PubMed  Google Scholar 

  21. Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, van der Heyden M, Opthof T, Pera M, de la Riviere AB, Passier R, Tertoolen L (2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107(21):2733–2740. doi:10.1161/01.CIR.0000068356.38592.68

    Article  CAS  PubMed  Google Scholar 

  22. Rodda SJ, Kavanagh SJ, Rathjen J, Rathjen PD (2002) Embryonic stem cell differentiation and the analysis of mammalian development. Int J Dev Biol 46(4):449–458

    CAS  PubMed  Google Scholar 

  23. Rathjen J, Rathjen PD (2001) Mouse ES cells: experimental exploitation of pluripotent differentiation potential. Curr Opin Genet Dev 11(5):587–594

    Article  CAS  PubMed  Google Scholar 

  24. Kang Y, Nagy JM, Polak JM, Mantalaris A (2009) Proteomic characterization of the conditioned media produced by the visceral endoderm-like cell lines HepG2 and END2: toward a defined medium for the osteogenic/chondrogenic differentiation of embryonic stem cells. Stem Cells Dev 18(1):77–91. doi:10.1089/scd.2008.0026

    Article  CAS  PubMed  Google Scholar 

  25. Keller GM, Webb S, Kennedy M (2002) Hematopoietic development of ES cells in culture. Methods Mol Med 63:209–230

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Mantalaris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fauzi, I., Panoskaltsis, N., Mantalaris, A. (2015). In Vitro Differentiation of Embryonic Stem Cells into Hematopoietic Lineage: Towards Erythroid Progenitor’s Production. In: Turksen, K. (eds) Embryonic Stem Cell Protocols. Methods in Molecular Biology, vol 1341. Humana Press, New York, NY. https://doi.org/10.1007/7651_2015_218

Download citation

  • DOI: https://doi.org/10.1007/7651_2015_218

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2953-5

  • Online ISBN: 978-1-4939-2954-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics