Skip to main content

Generating Inner Ear Organoids from Mouse Embryonic Stem Cells

  • Protocol
  • First Online:
Embryonic Stem Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1341))

Abstract

This protocol describes a three-dimensional culture method for generating inner ear sensory epithelia, which comprises sensory hair cells and a concurrently arising neuronal population. Mouse embryonic stem cells are initially plated in 96-well plates with differentiation media; following aggregation, Matrigel is added in order to promote epithelialization. A series of small molecule applications is then used over the first 14 days of culture to guide differentiation towards an otic lineage. After 16–20 days, vesicles containing inner ear sensory hair cells and supporting cells arise from the cultured aggregates. Aggregates may be analyzed using immunohistochemistry and electrophysiology techniques. This system serves as a simple and relatively inexpensive in vitro model of inner ear development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eiraku M et al (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56

    Article  CAS  PubMed  Google Scholar 

  2. Nakano T et al (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:771–785

    Article  CAS  PubMed  Google Scholar 

  3. Eiraku M et al (2008) Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3:519–532

    Article  CAS  PubMed  Google Scholar 

  4. Eiraku M, Sasai Y (2012) Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues. Nat Protoc 7:69–79

    Article  CAS  Google Scholar 

  5. Nasu M et al (2012) Robust formation and maintenance of continuous stratified cortical neuroepithelium by laminin-containing matrix in mouse ES cell culture. PLoS One 7:e53024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Spence JR et al (2010) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:105–109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. McCracken KW, Howell JC, Wells JM, Spence JR (2011) Generating human intestinal tissue from pluripotent stem cells in vitro. Nat Protoc 6:1920–1928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Wilson PA, Hemmati-Brivanlou A (1995) Induction of epidermis and inhibition of neural fate by BMP-4. Nature 376:331–333

    Article  CAS  PubMed  Google Scholar 

  9. Wilson PA, Lagna G, Suzuki A, Hemmati-Brivanlou A (1997) Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1. Development 124:3177–3184

    CAS  PubMed  Google Scholar 

  10. Neave B, Holder N, Patient R (1997) A graded response to BMP-4 spatially coordinates patterning of the mesoderm and ectoderm in zebrafish. Mech Dev 62:183–195

    Article  CAS  PubMed  Google Scholar 

  11. Bartha KA et al (1999) BMP activity establishes a gradient of positional information throughout the entire neural plate. Development 126:4977–4987

    Google Scholar 

  12. Kwon HJ, Bhat N, Sweet EM, Cornell RA, Riley BB (2010) Identification of early requirements for preplacodal ectoderm and sensory organ development. PLoS Genet 6:e1001133

    Article  PubMed Central  PubMed  Google Scholar 

  13. Harvey NT et al (2010) Response to BMP4 signaling during ES cell differentiation defines intermediates of the ectoderm lineage. J Cell Sci 123:1796–1804

    Article  CAS  PubMed  Google Scholar 

  14. James D, Levine AJ, Besser D, Hemmati-Brivanlou A (2005) TGF-B/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132:1273–1282

    Article  CAS  PubMed  Google Scholar 

  15. Camus A, Perea-Gomez A, Moreau A, Collignon J (2006) Absence of nodal signaling promotes precocious neural differentiation in the mouse embryo. Dev Biol 295:743–755

    Article  CAS  PubMed  Google Scholar 

  16. Chambers SM et al (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Reichert S, Randall RA, Hill CS (2013) A BMP regulatory network controls ectodermal cell fate decisions at the neural plate border. Development 140:4435–4444

    Article  CAS  PubMed  Google Scholar 

  18. Litsiou A, Hanson S, Streit A (2005) A balance of FGF, BMP, WNT signaling positions the future placode territory in the head. Development 132:4051–4062

    Article  CAS  PubMed  Google Scholar 

  19. Grocott T, Tambalo M, Streit A (2012) The peripheral sensory nervous system in the vertebrate head: a gene regulatory perspective. Dev Biol 370:3–23

    Article  CAS  PubMed  Google Scholar 

  20. Pieper M, Ahrens K, Rink E, Peter A, Schlosser G (2012) Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm. Development 139:1175–1187

    Article  CAS  PubMed  Google Scholar 

  21. Wright TJ, Mansour SL (2003) Fgf3 and Fgf10 are required for mouse otic placode induction. Development 130:3379–3390

    Article  CAS  PubMed  Google Scholar 

  22. Urness LD, Paxton CN, Wang X, Schoenwolf GC, Mansour SL (2010) FGF signaling regulates otic placode induction and refinement by controlling both ectodermal target genes and hindbrain Wnt8a. Dev Biol 340:595–604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ohyama T, Mohamed OA, Taketo MM, Dufort D, Groves AK (2006) Wnt signals mediate a fate decision between otic placode and epidermis. Development 133:865–875

    Article  CAS  PubMed  Google Scholar 

  24. Riccomango MM, Takada S, Epstein DJ (2005) Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh. Genes Dev 19:1612–1623

    Article  Google Scholar 

  25. Freter S, Muta Y, Mak SS, Rinkwitz S, Ladher RK (2008) Progressive restriction of otic fate: the role of FGF and Wnt in resolving inner ear potential. Development 135:3415–3424

    Article  CAS  PubMed  Google Scholar 

  26. Koehler KR, Mikosz AM, Molosh AI, Patel D, Hashino E (2013) Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature 500:217–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Lerner SA, Matz GJ, Hawkins JE (1981) Aminoglycoside ototoxicity. Little Brown and Company, Boston, MA

    Google Scholar 

  28. Koehler KR, Hashino E (2014) 3D mouse embryonic stem cell culture for generating inner ear organoids. Nat Protoc 9(6):1229–1244

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health (NIH) grants R21DC012617, R01DC013294 and an Action of Hearing Loss Research Grant (to E.H.). The authors would like to thank Andrew Mikosz and Sreeparna Majumdar for their technical assistance and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eri Hashino Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Longworth-Mills, E., Koehler, K.R., Hashino, E. (2015). Generating Inner Ear Organoids from Mouse Embryonic Stem Cells. In: Turksen, K. (eds) Embryonic Stem Cell Protocols. Methods in Molecular Biology, vol 1341. Humana Press, New York, NY. https://doi.org/10.1007/7651_2015_215

Download citation

  • DOI: https://doi.org/10.1007/7651_2015_215

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2953-5

  • Online ISBN: 978-1-4939-2954-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics