Neurofilament Light Chain Determination from Peripheral Blood Samples

  • Marguerite Limberg
  • Giulio Disanto
  • Christian Barro
  • Jens KuhleEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1304)


The loss of neurological function is closely related to axonal damage. Neurofilament subunits are concentrated in neurons and axons and have emerged as promising biomarkers for neurodegeneration. Electrochemiluminescence (ECL) based assays are known to be of superior sensitivity and require less sample volume than conventional ELISAs. Here, we describe a highly sensitive ECL based immunoassay for quantification of neurofilament light chain (NfL) in blood and CSF.


Axonal damage Neurofilament light chain (NfL) Biomarker Electrochemiluminescence Cerebrospinal fluid (CSF) Serum 


  1. 1.
    Petzold A (2005) Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J Neurol Sci 233:183–198PubMedCrossRefGoogle Scholar
  2. 2.
    Brettschneider J, Petzold A, Junker A, Tumani H (2006) Axonal damage markers in the cerebrospinal fluid of patients with clinically isolated syndrome improve predicting conversion to definite multiple sclerosis. Mult Scler 12:143–148PubMedCrossRefGoogle Scholar
  3. 3.
    Deisenhammer F, Egg R, Giovannoni G et al (2009) EFNS guidelines on disease-specific CSF investigations. Eur J Neurol 16:760–770PubMedCrossRefGoogle Scholar
  4. 4.
    Giovannoni G (2010) Cerebrospinal fluid neurofilament: the biomarker that will resuscitate the ‘Spinal Tap’. Mult Scler 16:285–286PubMedCrossRefGoogle Scholar
  5. 5.
    Gunnarsson M, Malmestrom C, Axelsson M et al (2011) Axonal damage in relapsing multiple sclerosis is markedly reduced by natalizumab. Ann Neurol 69:83–89PubMedCrossRefGoogle Scholar
  6. 6.
    Kuhle J, Regeniter A, Leppert D et al (2010) A highly sensitive electrochemiluminescence immunoassay for the neurofilament heavy chain protein. J Neuroimmunol 220:114PubMedCrossRefGoogle Scholar
  7. 7.
    Kuhle J, Leppert D, Petzold A et al (2011) Neurofilament heavy chain in CSF correlates with relapses and disability in multiple sclerosis. Neurology 76:1206–1213PubMedCrossRefGoogle Scholar
  8. 8.
    Petzold A, Keir G, Green AJ, Giovannoni G, Thompson EJ (2003) A specific ELISA for measuring neurofilament heavy chain phosphoforms. J Immunol Methods 278:179–190PubMedCrossRefGoogle Scholar
  9. 9.
    Petzold A, Brettschneider J, Jin K et al (2009) CSF protein biomarkers for proximal axonal damage improve prognostic accuracy in the acute phase of Guillain-Barre syndrome. Muscle Nerve 40:42–49PubMedCrossRefGoogle Scholar
  10. 10.
    Norgren N, Rosengren L, Stigbrand T (2003) Elevated neurofilament levels in neurological diseases. Brain Res 987:25–31PubMedCrossRefGoogle Scholar
  11. 11.
    Teunissen CE, Iacobaeus E, Khademi M et al (2009) Combination of CSF N-acetylaspartate and neurofilaments in multiple sclerosis. Neurology 72:1322–1329PubMedCrossRefGoogle Scholar
  12. 12.
    Norgren N, Sundstrom P, Svenningsson A, Rosengren L, Stigbrand T, Gunnarsson M (2004) Neurofilament and glial fibrillary acidic protein in multiple sclerosis. Neurology 63:1586–1590PubMedCrossRefGoogle Scholar
  13. 13.
    Norgren N, Karlsson JE, Rosengren L, Stigbrand T (2002) Monoclonal antibodies selective for low molecular weight neurofilaments. Hybrid Hybridomics 21:53–59PubMedCrossRefGoogle Scholar
  14. 14.
    Motmans K, Raus J, Vandevyver C (1996) Quantification of cytokine messenger RNA in transfected human T cells by RT-PCR and an automated electrochemiluminescence-based post-PCR detection system. J Immunol Methods 190:107–116PubMedCrossRefGoogle Scholar
  15. 15.
    Yu H, Bruno JG (1996) Immunomagnetic-electrochemiluminescent detection of Escherichia coli O157 and Salmonella typhimurium in foods and environmental water samples. Appl Environ Microbiol 62:587–592PubMedCentralPubMedGoogle Scholar
  16. 16.
    Grimshaw C, Gleason C, Chojnicki E, Young J (1997) Development of an equilibrium immunoassay using electrochemiluminescent detection for a novel recombinant protein product and its application to pre-clinical product development. J Pharm Biomed Anal 16:605–612PubMedCrossRefGoogle Scholar
  17. 17.
    Kijek TM, Rossi CA, Moss D, Parker RW, Henchal EA (2000) Rapid and sensitive immunomagnetic-electrochemiluminescent detection of staphylococcal enterotoxin B. J Immunol Methods 236:9–17PubMedCrossRefGoogle Scholar
  18. 18.
    Guglielmo-Viret V, Attree O, Blanco-Gros V, Thullier P (2005) Comparison of electrochemiluminescence assay and ELISA for the detection of Clostridium botulinum type B neurotoxin. J Immunol Methods 301:164–172PubMedCrossRefGoogle Scholar
  19. 19.
    Guglielmo-Viret V, Thullier P (2007) Comparison of an electrochemiluminescence assay in plate format over a colorimetric ELISA, for the detection of ricin B chain (RCA-B). J Immunol Methods 328:70–78PubMedCrossRefGoogle Scholar
  20. 20.
    Gaiottino J, Norgren N, Dobson R et al (2013) Increased neurofilament light chain blood levels in neurodegenerative neurological diseases. PLoS One 8:e75091PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Marguerite Limberg
    • 1
  • Giulio Disanto
    • 2
  • Christian Barro
    • 1
  • Jens Kuhle
    • 1
    Email author
  1. 1.NeurologyUniversity Hospital BaselBaselSwitzerland
  2. 2.Neurocenter of Southern SwitzerlandOspedale Regionale di LuganoLuganoSwitzerland

Personalised recommendations