Advertisement

Experimental Autoimmune Encephalomyelitis in Mice

  • Rachael L. Terry
  • Igal Ifergan
  • Stephen D. MillerEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1304)

Abstract

Experimental autoimmune encephalitis (EAE), the animal model of multiple sclerosis (MS), has provided significant insight into the mechanisms that initiate and drive autoimmunity. Several central nervous system proteins and peptides have been used to induce disease, in a number of different mouse strains, to model the diverse clinical presentations of MS. In this chapter, we detail the materials and methods used to induce active and adoptive EAE. We focus on disease induction in the SJL/J, C57BL/6, and BALB/c mouse strains, using peptides derived from proteolipid protein, myelin basic protein, and myelin oligodendrocyte glycoprotein. We also include a protocol for the isolation of leukocytes from the spinal cord and brain for flow cytometric analysis.

Keywords

Experimental autoimmune encephalomyelitis Multiple sclerosis Autoimmune disease Mouse model CD4+ T cells 

Abbreviations

CNS

Central nervous system

EAE

Experimental autoimmune encephalomyelitis

IFA

Incomplete Freund’s adjuvant

MBP

Myelin basic protein

MOG

Myelin oligodendrocyte glycoprotein

MS

Multiple sclerosis

PLP

Proteolipid protein

TCR

T cell receptor

References

  1. 1.
    Bruck W, Stadelmann C (2005) The spectrum of multiple sclerosis: new lessons from pathology. Curr Opin Neurol 18:221–224PubMedCrossRefGoogle Scholar
  2. 2.
    Lassmann H, Bruck W, Lucchinetti CF (2007) The immunopathology of multiple sclerosis: an overview. Brain Pathol 17:210–218PubMedCrossRefGoogle Scholar
  3. 3.
    Stinissen P, Hellings N (2008) Activation of myelin reactive T cells in multiple sclerosis: a possible role for T cell degeneracy? Eur J Immunol 38:1190–1193PubMedCrossRefGoogle Scholar
  4. 4.
    Al-Omaishi J, Bashir R, Gendelman HE (1999) The cellular immunology of multiple sclerosis. J Leukoc Biol 65:444–452PubMedGoogle Scholar
  5. 5.
    Goverman J (2009) Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9:393–407PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Feinstein A (2004) The neuropsychiatry of multiple sclerosis. Can J Psychiatry 49:157–163PubMedGoogle Scholar
  7. 7.
    Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 46:907–911PubMedCrossRefGoogle Scholar
  8. 8.
    Baxter AG (2007) The origin and application of experimental autoimmune encephalomyelitis. Nat Rev Immunol 7:904–912PubMedCrossRefGoogle Scholar
  9. 9.
    Miller SD, Karpus WJ, Davidson TS (2010) Experimental autoimmune encephalomyelitis in the mouse. Curr Protoc Immunol. Chapter 15, Unit 15 11Google Scholar
  10. 10.
    Lyons JA, Ramsbottom MJ, Trotter JL, Cross AH (2002) Identification of the encephalitogenic epitopes of CNS proteolipid protein in BALB/c mice. J Autoimmun 19:195–201PubMedCrossRefGoogle Scholar
  11. 11.
    Mendel I, Kerlero de Rosbo N, Ben-Nun A (1995) A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: fine specificity and T cell receptor V beta expression of encephalitogenic T cells. Eur J Immunol 25:1951–1959PubMedCrossRefGoogle Scholar
  12. 12.
    Tompkins SM, Padilla J, Dal Canto MC, Ting JP, Van Kaer L, Miller SD (2002) De novo central nervous system processing of myelin antigen is required for the initiation of experimental autoimmune encephalomyelitis. J Immunol 168:4173–4183PubMedCrossRefGoogle Scholar
  13. 13.
    Fritz RB, Chou CH, McFarlin DE (1983) Induction of experimental allergic encephalomyelitis in PL/J and (SJL/J x PL/J)F1 mice by myelin basic protein and its peptides: localization of a second encephalitogenic determinant. J Immunol 130:191–194PubMedGoogle Scholar
  14. 14.
    Tan LJ, Kennedy MK, Miller SD (1992) Regulation of the effector stages of experimental autoimmune encephalomyelitis via neuroantigen-specific tolerance induction. II. Fine specificity of effector T cell inhibition. J Immunol 148:2748–2755PubMedGoogle Scholar
  15. 15.
    Sakai K, Zamvil SS, Mitchell DJ, Lim M, Rothbard JB, Steinman L (1988) Characterization of a major encephalitogenic T cell epitope in SJL/J mice with synthetic oligopeptides of myelin basic protein. J Neuroimmunol 19:21–32PubMedCrossRefGoogle Scholar
  16. 16.
    Amor S, Groome N, Linington C, Morris MM, Dornmair K, Gardinier MV et al (1994) Identification of epitopes of myelin oligodendrocyte glycoprotein for the induction of experimental allergic encephalomyelitis in SJL and Biozzi AB/H mice. J Immunol 153:4349–4356PubMedGoogle Scholar
  17. 17.
    Tsunoda I, Kuang LQ, Theil DJ, Fujinami RS (2000) Antibody association with a novel model for primary progressive multiple sclerosis: induction of relapsing-remitting and progressive forms of EAE in H2s mouse strains. Brain Pathol 10:402–418PubMedCrossRefGoogle Scholar
  18. 18.
    Greer JM, Klinguer C, Trifilieff E, Sobel RA, Lees MB (1997) Encephalitogenicity of murine, but not bovine, DM20 in SJL mice is due to a single amino acid difference in the immunodominant encephalitogenic epitope. Neurochem Res 22:541–547PubMedCrossRefGoogle Scholar
  19. 19.
    Greer JM, Sobel RA, Sette A, Southwood S, Lees MB, Kuchroo VK (1996) Immunogenic and encephalitogenic epitope clusters of myelin proteolipid protein. J Immunol 156:371–379PubMedGoogle Scholar
  20. 20.
    Tuohy VK, Thomas DM (1995) Sequence 104-117 of myelin proteolipid protein is a cryptic encephalitogenic T cell determinant for SJL/J mice. J Neuroimmunol 56:161–170PubMedCrossRefGoogle Scholar
  21. 21.
    Greer JM, Denis B, Sobel RA, Trifilieff E (2001) Thiopalmitoylation of myelin proteolipid protein epitopes enhances immunogenicity and encephalitogenicity. J Immunol 166:6907–6913PubMedCrossRefGoogle Scholar
  22. 22.
    Tuohy VK, Lu Z, Sobel RA, Laursen RA, Lees MB (1989) Identification of an encephalitogenic determinant of myelin proteolipid protein for SJL mice. J Immunol 142:1523–1527PubMedGoogle Scholar
  23. 23.
    Greer JM, Kuchroo VK, Sobel RA, Lees MB (1992) Identification and characterization of a second encephalitogenic determinant of myelin proteolipid protein (residues 178-191) for SJL mice. J Immunol 149:783–788PubMedGoogle Scholar
  24. 24.
    Amor S, O’Neill JK, Morris MM, Smith RM, Wraith DC, Groome N et al (1996) Encephalitogenic epitopes of myelin basic protein, proteolipid protein, myelin oligodendrocyte glycoprotein for experimental allergic encephalomyelitis induction in Biozzi ABH (H-2Ag7) mice share an amino acid motif. J Immunol 156:3000–3008PubMedGoogle Scholar
  25. 25.
    Ando DG, Clayton J, Kono D, Urban JL, Sercarz EE (1989) Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype. Cell Immunol 124:132–143PubMedCrossRefGoogle Scholar
  26. 26.
    Zamvil SS, Mitchell DJ, Moore AC, Kitamura K, Steinman L, Rothbard JB (1986) T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature 324:258–260PubMedCrossRefGoogle Scholar
  27. 27.
    Zamvil SS, Mitchell DJ, Powell MB, Sakai K, Rothbard JB, Steinman L (1988) Multiple discrete encephalitogenic epitopes of the autoantigen myelin basic protein include a determinant for I-E class II-restricted T cells. J Exp Med 168:1181–1186PubMedCrossRefGoogle Scholar
  28. 28.
    Kerlero de Rosbo N, Mendel I, Ben-Nun A (1995) Chronic relapsing experimental autoimmune encephalomyelitis with a delayed onset and an atypical clinical course, induced in PL/J mice by myelin oligodendrocyte glycoprotein (MOG)-derived peptide: preliminary analysis of MOG T cell epitopes. Eur J Immunol 25:985–993PubMedCrossRefGoogle Scholar
  29. 29.
    Whitham RH, Jones RE, Hashim GA, Hoy CM, Wang RY, Vandenbark AA et al (1991) Location of a new encephalitogenic epitope (residues 43 to 64) in proteolipid protein that induces relapsing experimental autoimmune encephalomyelitis in PL/J and (SJL x PL)F1 mice. J Immunol 147:3803–3808PubMedGoogle Scholar
  30. 30.
    Muller DM, Pender MP, Greer JM (2000) A neuropathological analysis of experimental autoimmune encephalomyelitis with predominant brain stem and cerebellar involvement and differences between active and passive induction. Acta Neuropathol 100:174–182PubMedCrossRefGoogle Scholar
  31. 31.
    Endoh M, Kunishita T, Nihei J, Nishizawa M, Tabira T (1990) Susceptibility to proteolipid apoprotein and its encephalitogenic determinants in mice. Int Arch Allergy Appl Immunol 92:433–438PubMedCrossRefGoogle Scholar
  32. 32.
    Goverman J, Woods A, Larson L, Weiner LP, Hood L, Zaller DM (1993) Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell 72:551–560PubMedCrossRefGoogle Scholar
  33. 33.
    Lafaille JJ, Nagashima K, Katsuki M, Tonegawa S (1994) High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T cell receptor transgenic mice. Cell 78:399–408PubMedCrossRefGoogle Scholar
  34. 34.
    Madsen LS, Andersson EC, Jansson L, krogsgaard M, Andersen CB, Engberg J et al (1999) A humanized model for multiple sclerosis using HLA-DR2 and a human T-cell receptor. Nat Genet 23:343–347PubMedCrossRefGoogle Scholar
  35. 35.
    Ellmerich S, Mycko M, Takacs K, Waldner H, Wahid FN, Boyton RJ et al (2005) High incidence of spontaneous disease in an HLA-DR15 and TCR transgenic multiple sclerosis model. J Immunol 174:1938–1946PubMedCrossRefGoogle Scholar
  36. 36.
    Waldner H, Whitters MJ, Sobel RA, Collins M, Kuchroo VK (2000) Fulminant spontaneous autoimmunity of the central nervous system in mice transgenic for the myelin proteolipid protein-specific T cell receptor. Proc Natl Acad Sci U S A 97:3412–3417PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Bettelli E, Pagany M, Weiner HL, Linington C, Sobel RA, Kuchroo VK (2003) Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J Exp Med 197:1073–1081PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Bettelli E, Baeten D, Jager A, Sobel RA, Kuchroo VK (2006) Myelin oligodendrocyte glycoprotein-specific T and B cells cooperate to induce a Devic-like disease in mice. J Clin Invest 116:2393–2402PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Krishnamoorthy G, Lassmann H, Wekerle H, Holz A (2006) Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation. J Clin Invest 116:2385–2392PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Pollinger B, Krishnamoorthy G, Berer K, Lassmann H, Bosl MR, Dunn R et al (2009) Spontaneous relapsing-remitting EAE in the SJL/J mouse: MOG-reactive transgenic T cells recruit endogenous MOG-specific B cells. J Exp Med 206:1303–1316PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Zehntner SP, Brisebois M, Tran E, Owens T, Fournier S (2003) Constitutive expression of a costimulatory ligand on antigen-presenting cells in the nervous system drives demyelinating disease. FASEB J 17:1910–1912PubMedGoogle Scholar
  42. 42.
    Brisebois M, Zehntner SP, Estrada J, Owens T, Fournier S (2006) A pathogenic role for CD8+ T cells in a spontaneous model of demyelinating disease. J Immunol 177:2403–2411PubMedCrossRefGoogle Scholar
  43. 43.
    Na SY, Cao Y, Toben C, Nitschke L, Stadelmann C, Gold R et al (2008) Naive CD8 T-cells initiate spontaneous autoimmunity to a sequestered model antigen of the central nervous system. Brain 131:2353–2365PubMedCrossRefGoogle Scholar
  44. 44.
    Friese MA, Jakobsen KB, Friis L, Etzensperger R, Craner MJ, McMahon RM et al (2008) Opposing effects of HLA class I molecules in tuning autoreactive CD8+ T cells in multiple sclerosis. Nat Med 14:1227–1235PubMedCrossRefGoogle Scholar
  45. 45.
    Anderson AC, Chandwaskar R, Lee DH, Sullivan JM, Solomon A, Rodriguez-Manzanet R et al (2012) A transgenic model of central nervous system autoimmunity mediated by CD4+ and CD8+ T and B cells. J Immunol 188:2084–2092PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Nath N, Prasad R, Giri S, Singh AK, Singh I (2006) T-bet is essential for the progression of experimental autoimmune encephalomyelitis. Immunology 118:384–391PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Shaw MK, Kim C, Hao HW, Chen F, Tse HY (1996) Induction of myelin basic protein-specific experimental autoimmune encephalomyelitis in C57BL/6 mice: mapping of T cell epitopes and T cell receptor V beta gene segment usage. J Neurosci Res 45:690–699PubMedCrossRefGoogle Scholar
  48. 48.
    Clark RB, Grunnet M, Lingenheld EG (1997) Adoptively transferred EAE in mice bearing the lpr mutation. Clin Immunol Immunopathol 85:315–319PubMedCrossRefGoogle Scholar
  49. 49.
    Segal BM, Dwyer BK, Shevach EM (1998) An interleukin (IL)-10/IL-12 immunoregulatory circuit controls susceptibility to autoimmune disease. J Exp Med 187:537–546PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Mendel I, Shevach EM (2002) Differentiated Th1 autoreactive effector cells can induce experimental autoimmune encephalomyelitis in the absence of IL-12 and CD40/CD40L interactions. J Neuroimmunol 122:65–73PubMedCrossRefGoogle Scholar
  51. 51.
    Pettinelli CB, McFarlin DE (1981) Adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice after in vitro activation of lymph node cells by myelin basic protein: requirement for Lyt 1+ 2- T lymphocytes. J Immunol 127:1420–1423PubMedGoogle Scholar
  52. 52.
    Pettinelli CB, Fritz RB, Chou CH, McFarlin DE (1982) Encephalitogenic activity of guinea pig myelin basic protein in the SJL mouse. J Immunol 129:1209–1211PubMedGoogle Scholar
  53. 53.
    Miller SD, Tan LJ, Kennedy MK, Dal Canto MC (1991) Specific immunoregulation of the induction and effector stages of relapsing EAE via neuroantigen-specific tolerance induction. Ann N Y Acad Sci 636:79–94PubMedCrossRefGoogle Scholar
  54. 54.
    McRae BL, Kennedy MK, Tan LJ, Dal Canto MC, Picha KS, Miller SD (1992) Induction of active and adoptive relapsing experimental autoimmune encephalomyelitis (EAE) using an encephalitogenic epitope of proteolipid protein. J Neuroimmunol 38:229–240PubMedCrossRefGoogle Scholar
  55. 55.
    Kim C, Tse HY (1993) Adoptive transfer of murine experimental autoimmune encephalomyelitis in SJL.Thy-1 congenic mouse strains. J Neuroimmunol 46:129–136PubMedCrossRefGoogle Scholar
  56. 56.
    Skundric DS, Kim C, Tse HY, Raine CS (1993) Homing of T cells to the central nervous system throughout the course of relapsing experimental autoimmune encephalomyelitis in Thy-1 congenic mice. J Neuroimmunol 46:113–121PubMedCrossRefGoogle Scholar
  57. 57.
    Fritz RB, Zhao ML (1994) Encephalitogenicity of myelin basic protein exon-2 peptide in mice. J Neuroimmunol 51:1–6PubMedCrossRefGoogle Scholar
  58. 58.
    Segal BM, Raine CS, McFarlin DE, Voskuhl RR, McFarland HF (1994) Experimental allergic encephalomyelitis induced by the peptide encoded by exon 2 of the MBP gene, a peptide implicated in remyelination. J Neuroimmunol 51:7–19PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Rachael L. Terry
    • 1
  • Igal Ifergan
    • 1
  • Stephen D. Miller
    • 2
    Email author
  1. 1.Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of MedicineNorthwestern UniversityChicagoUSA
  2. 2.Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of MedicineNorthwestern UniversityChicagoUSA

Personalised recommendations