Skip to main content

Lipid Rafts and Detergent-Resistant Membranes in Epithelial Keratinocytes

  • Protocol
  • First Online:
Book cover Epidermal Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1195))

Abstract

Our understanding of the plasma membrane has markedly increased since Singer and Nicolson proposed the fluid mosaic model in 1972. While their revolutionary theory of the lipid bilayer remains largely valid, it is now known that lipids and proteins are not randomly dispersed throughout the plasma membrane but instead may be organized within membrane microdomains, commonly referred to as lipid rafts. Lipid rafts are highly dynamic, detergent resistant, and enriched with both cholesterol and glycosphingolipids. The two main types are flotillin-rich planar lipid rafts and caveolin-rich caveolae. It is proposed that flotillin and caveolin proteins regulate cell communication by compartmentalizing and interacting with signal transduction proteins within their respective lipid microdomains. Consequently, membrane rafts play an important role in vital cellular functions including migration, invasion, and signaling; thus, alterations in their microenvironment can initiate signaling pathways that affect cellular function and behavior. Therefore, the identification of lipid rafts and their associated proteins is integral to the study of transmembrane signaling. Here, we review the current standard protocols and biochemical approaches used to isolate and define raft proteins from epithelial cells and tissues. Furthermore, in Section 3 of this chapter, detailed protocols are offered for isolating lipid rafts by subjection to detergent and sucrose density centrifugation, as well as an approach for selectively isolating caveolae. Methods to manipulate rafts with treatments such as methyl-β-cyclodextrin and flotillin III are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  PubMed  Google Scholar 

  2. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  CAS  PubMed  Google Scholar 

  3. Suomalainen M (2002) Lipid rafts and assembly of enveloped viruses. Traffic 3:705–709

    Article  CAS  PubMed  Google Scholar 

  4. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  CAS  PubMed  Google Scholar 

  5. Head BP, Patel HH, Insel PA (2014) Interaction of membrane/lipid rafts with the cytoskeleton: Impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochim Biophys Acta 1838:532–545

    Article  CAS  PubMed  Google Scholar 

  6. Head BP, Patel HH, Roth DM, Murray F, Swaney JS, Niesman IR, Farquhar MG, Insel PA (2006) Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components. J Biol Chem 281:26391–26399

    Article  CAS  PubMed  Google Scholar 

  7. Stuermer CA (2010) The reggie/flotillin connection to growth. Trends Cell Biol 20:6–13

    Article  CAS  PubMed  Google Scholar 

  8. Giltaire S, Lambert S, Poumay Y (2011) HB-EGF synthesis and release induced by cholesterol depletion of human epidermal keratinocytes is controlled by extracellular atp and involves both p38 and ERK1/2 signaling pathways. J Cell Physiol 226:1651–1659

    Article  CAS  PubMed  Google Scholar 

  9. Mathay C, Pierre M, Pittelkow MR, Depiereux E, Nikkels AF, Colige A, Poumay Y (2010) Transcriptional profiling after lipid raft disruption in keratinocytes identifies critical mediators of atopic dermatitis pathways. J Invest Dermatol 131:46–58

    Article  PubMed  Google Scholar 

  10. Bang B, Gniadecki R, Gajkowska B (2005) Disruption of lipid rafts causes apoptotic cell death in HaCaT keratinocytes. Exp Dermatol 14:266–272

    Article  CAS  PubMed  Google Scholar 

  11. Gniadecki R (2004) Depletion of membrane cholesterol causes ligand-independent activation of Fas and apoptosis. Biochem Biophys Res Commun 320:165–169

    Article  CAS  PubMed  Google Scholar 

  12. Tellier E, Canault M, Rebsomen L, Bonardo B, Juhan-Vague I, Nalbone G, Peiretti F (2006) The shedding activity of ADAM17 is sequestered in lipid rafts. Exp Cell Res 312:3969–3980

    Article  CAS  PubMed  Google Scholar 

  13. Grether-Beck S, Salahshour-Fard M, Timmer A, Brenden H, Felsner I, Walli R, Füllekrug J, Krutmann J (2008) Ceramide and raft signaling are linked with each other in UVA radiation-induced gene expression. Oncogene 27:4768–4778

    Article  CAS  PubMed  Google Scholar 

  14. Bayer M, Proksch P, Felsner I, Brenden H, Kohne Z, Walli R, Duong TN, Götz C, Krutmann J, Grether‐Beck S (2011) Photoprotection against UVAR: effective triterpenoids require a lipid raft stabilizing chemical structure. Exp Dermatol 20:955–958

    Article  CAS  PubMed  Google Scholar 

  15. Ma WY, Zhuang L, Cai DX, Zhong H, Zhao C, Sun Q (2012) Inverse correlation between caveolin-1 expression and clinical severity in psoriasis vulgaris. J Int Med Res 40:1745–1751

    Article  CAS  PubMed  Google Scholar 

  16. Qin H, Bollag WB (2013) The caveolin-1 scaffolding domain peptide decreases phosphatidylglycerol levels and inhibits calcium-induced differentiation in mouse keratinocytes. PLoS One 8:e80946

    Article  PubMed Central  PubMed  Google Scholar 

  17. Trimmer C, Sotgia F, Lisanti MP, Capozza F (2013) Cav1 inhibits benign skin tumor development in a two-stage carcinogenesis model by suppressing epidermal proliferation. Am J Transl Res 5:80–91

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Staubach S, Hanisch FG (2011) Lipid rafts: signaling and sorting platforms of cells and their roles in cancer. Expert Rev Proteomics 8:263–277

    Article  CAS  PubMed  Google Scholar 

  19. Fecchi K, Travaglione S, Spadaro F, Quattrini A, Parolini I, Piccaro G, Raggi C, Fabbri A, Felicetti F, Carè A (2012) Human melanoma cells express FGFR/Src/Rho signaling that entails an adhesion‐independent caveolin‐1 membrane association. Int J Cancer 130:1273–1283

    Article  CAS  PubMed  Google Scholar 

  20. Parton RG, del Pozo MA (2013) Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 14:98–112

    Article  CAS  PubMed  Google Scholar 

  21. Brennan D, Peltonen S, Dowling A, Medhat W, Green KJ, Wahl JK, Del Galdo F, Mahoney MG (2011) A role for caveolin-1 in desmoglein binding and desmosome dynamics. Oncogene 31:1636–1648

    Article  PubMed Central  PubMed  Google Scholar 

  22. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  PubMed  Google Scholar 

  23. Babiychuk EB, Draeger A (2006) Biochemical characterization of detergent-resistant membranes: a systematic approach. Biochem J 397:407–416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Heerklotz H (2002) Triton promotes domain formation in lipid raft mixtures. Biophys J 83:2693–2701

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11:688–699

    Article  CAS  PubMed  Google Scholar 

  26. Pinaud F, Michalet X, Iyer G, Margeat E, Moore HP, Weiss S (2009) Dynamic partitioning of a glycosyl-phosphatidylinositol-anchored protein in glycosphingolipid-rich microdomains imaged by single-quantum dot tracking. Traffic 10:691–712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Chamberlain LH (2004) Detergents as tools for the purification and classification of lipid rafts. FEBS Lett 559:1–5

    Article  CAS  PubMed  Google Scholar 

  28. Schuck S, Honsho M, Ekroos K, Shevchenko A, Simons K (2003) Resistance of cell membranes to different detergents. Proc Natl Acad Sci U S A 100:5795–5800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Gustavsson J, Parpal S, Karlsson M, Ramsing C, Thorn H, Borg M, Lindroth M, Peterson KH, Magnusson KE, Strålfors P (1999) Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J 13:1961–1971

    CAS  PubMed  Google Scholar 

  30. Brown DA (2006) Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology (Bethesda) 21:430–439

    Article  CAS  Google Scholar 

  31. Vind-Kezunovic D, Nielsen CH, Wojewodzka U, Gniadecki R (2008) Line tension at lipid phase boundaries regulates formation of membrane vesicles in living cells. Biochim Biophys Acta 1778:2480–2486

    Article  CAS  PubMed  Google Scholar 

  32. Schoop VM, Mirancea N, Fusenig NE (1999) Epidermal organization and differentiation of HaCaT keratinocytes in organotypic coculture with human dermal fibroblasts. J Invest Dermatol 112:343–353

    Article  CAS  PubMed  Google Scholar 

  33. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    Article  CAS  PubMed  Google Scholar 

  34. Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, Parks WP (1973) In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst 51:1417–1423

    CAS  PubMed  Google Scholar 

  35. Klein U, Gimpl G, Fahenholz F (1995) Alteration of the myometrial plasma membrane cholesterol content with beta-cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry 34:13784–13793

    Article  CAS  PubMed  Google Scholar 

  36. Powers KA, Szászi K, Khadaroo RG, Tawadros PS, Marshall JC, Kapus A, Rotstein OD (2006) Oxidative stress generated by hemorrhagic shock recruits Toll-like receptor 4 to the plasma membrane in macrophages. J Exp Med 203:1951–1961

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Roitbak T, Surviladze Z, Tikkanen R, Wandinger-Ness A (2005) A polycystin multiprotein complex constitutes a cholesterol-containing signalling microdomain in human kidney epithelia. Biochem J 392:29–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Moss JI, Garrett TJ, Hansen PJ (2012) Involvement of free cholesterol and high-density lipoprotein in development and resistance of the preimplantation bovine embryo to heat shock. J Anim Sci 90:3762–3769

    Article  CAS  PubMed  Google Scholar 

  39. Galbiati F, Volonte D, Brown AM, Weinstein DE, Ben-Ze’ev A, Pestell RG, Lisanti MP (2000) Caveolin-1 expression inhibits Wnt/beta-catenin/Lef-1 signaling by recruiting beta-catenin to caveolae membrane domains. J Biol Chem 275:23368–23377

    Article  CAS  PubMed  Google Scholar 

  40. Langlois S, Cowan KN, Shao Q, Cowan BJ, Laird DW (2008) Caveolin-1 and -2 interact with connexin43 and regulate gap junctional intercellular communication in keratinocytes. Mol Biol Cell 19:912–928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Pike LJ, Han X, Gross RW (2005) Epidermal growth factor receptors are localized to lipid rafts that contain a balance of inner and outer leaflet lipids: a shotgun lipidomics study. J Biol Chem 280:26796–26804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Riddell DR, Chistie G, Hussain I, Dingwall C (2001) Compartmentalization of β-secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts. Curr Biol 11:1288–1293

    Article  CAS  PubMed  Google Scholar 

  43. Zidovetzki R, Levitan I (2007) Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta 1768:1311–1324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Pike LJ, Miller JM (1998) Cholesterol depletion delocalizes phosphatidylinositol bisphosphate and inhibits hormone-stimulated phosphatidylinositol turnover. J Biol Chem 273:22298–22304

    Article  CAS  PubMed  Google Scholar 

  45. Bender FC, Whitbeck JC, Ponce de Leon M, Lou H, Eisenberg RJ, Cohen GH (2003) Specific association of glycoprotein B with lipid rafts during herpes simplex virus entry. J Virol 77:9542–9552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Blonder J, Terunuma A, Conrads TP, Chan KC, Yee C, Lucas DA, Schaefer CF, Yu LR, Issaq HJ, Veenstra TD, Vogel JC (2004) A proteomic characterization of the plasma membrane of human epidermis by high-throughput mass spectrometry. J Invest Dermatol 123:691–699

    Article  CAS  PubMed  Google Scholar 

  47. Seveau S, Bierne H, Giroux S, Prévost MC, Cossart P (2004) Role of lipid rafts in E-cadherin- and HGF-R/Met-mediated entry of Listeria monocytogenes into host cells. J Cell Biol 166:743–753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Causeret M, Taulet N, Comunale F, Favard C, Gauthier-Rouvière C (2005) N-cadherin association with lipid rafts regulates its dynamic assembly at cell-cell junctions in C2C12 myoblasts. Mol Biol Cell 16:2168–2180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Patra SK, Bettuzzi S (2007) Epigenetic DNA-methylation regulation of genes coding for lipid raft-associated components: a role for raft proteins in cell transformation and cancer progression (review). Oncol Rep 17:1279–1290

    CAS  PubMed  Google Scholar 

  50. Sugibayashi K, Onuki Y, Takayama K (2009) Displacement of tight junction proteins from detergent-resistant membrane domains by treatment with sodium caprate. Eur J Pharm Sci 36:246–253

    Article  CAS  PubMed  Google Scholar 

  51. Lambert D, O’Neill CA, Padfield PJ (2005) Depletion of Caco-2 cell cholesterol disrupts barrier function by altering the detergent solubility and distribution of specific tight-junction proteins. Biochem J 387:553–560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Simons M, Schwarz K, Kriz W, Miettinen A, Reiser J, Mundel P, Holthöfer H (2001) Involvement of lipid rafts in nephin phosphorylation and organization of the glomerular slit diaphragm. Am J Pathol 159:1069–1077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Bruewer M, Hopkins AM, Hobert ME, Nusrat A, Madara JL (2004) RhoA, Rac1, and Cdc42 exert distinct effects on epithelial barrier via selective structural and biochemical modulation of junctional proteins and F-actin. Am J Physiol Cell Physiol 287:C327–C335

    Article  CAS  PubMed  Google Scholar 

  54. Bowie RV, Donatello S, Lyes C, Owens MB, Babina IS, Hudson L, Walsh SV, O’Donoghue DP, Amu S, Barry SP, Fallon PG, Hopkins AM (2012) Lipid rafts are disrupted in mildly inflamed intestinal microenvironments without overt disruption of the epithelial barrier. Am J Physiol Gastrointest Liver Physiol 302:G781–G793

    Article  CAS  PubMed  Google Scholar 

  55. Schubert AL, Schubert W, Spray DC, Lisanti MP (2002) Connexin family members target to lipid raft domains and interact with caveolin-1. Biochemistry 41:5754–5764

    Article  CAS  PubMed  Google Scholar 

  56. Nava P, Laukoetter MG, Hopkins AM, Laur O, Gerner-Smidt K, Green KJ, Parkos CA, Nusrat A (2007) Desmoglein-2: a novel regulator of apoptosis in the intestinal epithelium. Mol Biol Cell 18:4565–4578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Delva E, Jennings JM, Calkins CC, Kottke MD, Faundez V, Kowalczyk AP (2008) Pemphigus vulgaris IgG-induced desmoglein-3 endocytosis and desmosomal disassembly are mediated by a clathrin- and dynamin-independent mechanism. J Biol Chem 283:18303–18313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Resnik N, Sepcic K, Plemenitas A, Windoffer R, Leube R, Veranic P (2011) Desmosome assembly and cell-cell adhesion are membrane raft-dependent processes. J Biol Chem 286:1499–1507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Michael DiPersio (Center for Cell Biology & Cancer Research, Albany Medical College), Dr. Mon-Li Chu, Donna Brennan, and Andrew Overmiller for critically reading the paper and for their insightful discussions. We thank Jordan Wesolowski and Dr. Fabienne Paumet for the protocol using the SW60 rotor. This work was supported by grants from the National Institutes of Health (Mahoney, R01AR056067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mỹ G. Mahoney Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

McGuinn, K.P., Mahoney, M.G. (2014). Lipid Rafts and Detergent-Resistant Membranes in Epithelial Keratinocytes. In: Turksen, K. (eds) Epidermal Cells. Methods in Molecular Biology, vol 1195. Springer, New York, NY. https://doi.org/10.1007/7651_2014_71

Download citation

  • DOI: https://doi.org/10.1007/7651_2014_71

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1223-0

  • Online ISBN: 978-1-4939-1224-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics