Skip to main content

Quantitative Real-Time PCR (qPCR) Workflow for Analyzing Staphylococcus aureus Gene Expression

  • Protocol
  • First Online:
The Genetic Manipulation of Staphylococci

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1373))

Abstract

Quantitative real-time polymerase chain reaction (qPCR) is a sensitive tool that can be used to quantify and compare the amount of specific RNA transcripts between different biological samples. This chapter describes the use of a “two-step” qPCR method to calculate the relative fold change of expression of genes of interest in S. aureus. Using this work-flow, cDNA is synthesized from RNA templates (previously checked for the absence of significant genomic DNA contamination) using a cocktail of random primers and reverse-transcriptase enzyme. The cDNA pools generated can then be assessed for expression of specific genes of interest using SYBR Green-based qPCR and quantification of relative fold-change expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Higuchi R, Dollinger G, Walsh PS et al (1992) Simultaneous amplification and detection of specific DNA sequences. Biotechnology (NY) 10:413–417

    Article  CAS  Google Scholar 

  2. Higuchi R, Fockler C, Dollinger G et al (1993) Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (NY) 11:1026–1030

    Article  CAS  Google Scholar 

  3. VanGuilder HD, Vrana KE, Freeman WM (2008) Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 44:619–626

    Article  CAS  PubMed  Google Scholar 

  4. Bio-Rad Laboratories Inc (2006) Real-time PCR applications guide. Bio-Rad Laboratories Inc, Hercules, CA, p 100

    Google Scholar 

  5. Science SL (2008) qPCR technical guide. Sigma-Aldrich Company, St. Louis, MO, 42

    Google Scholar 

  6. Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  7. Bustin SA (2010) Why the need for qPCR publication guidelines? The case for MIQE. Methods 50:217–226

    Article  CAS  PubMed  Google Scholar 

  8. Delgado A, Zaman S, Muthaiyan A et al (2008) The fusidic acid stimulon of Staphylococcus aureus. J Antimicrob Chemother 62:1207–1214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Richardson AR, Dunman PM, Fang FC (2006) The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity. Mol Microbiol 61:927–939

    Article  CAS  PubMed  Google Scholar 

  10. Nobre LS, Saraiva LM (2013) Effect of combined oxidative and nitrosative stresses on Staphylococcus aureus transcriptome. Appl Microbiol Biotechnol 97:2563–2573

    Article  CAS  PubMed  Google Scholar 

  11. Anderson KL, Roberts C, Disz T et al (2006) Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover. J Bacteriol 188:6739–6756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Weiss A, Ibarra JA, Paoletti J et al (2014) The delta subunit of RNA polymerase guides promoter selectivity and virulence in Staphylococcus aureus. Infect Immun 82:1424–1435

    Article  PubMed Central  PubMed  Google Scholar 

  13. Deng X, Liang H, Ulanovskaya OA et al (2014) Steady-state hydrogen peroxide induces glycolysis in Staphylococcus aureus and Pseudomonas aeruginosa. J Bacteriol. doi:10.1128/JB.01538-14

    PubMed Central  PubMed  Google Scholar 

  14. Ishii K, Adachi T, Yasukawa J et al (2014) Induction of virulence gene expression in Staphylococcus aureus by pulmonary surfactant. Infect Immun 82:1500–1510

    Article  PubMed Central  PubMed  Google Scholar 

  15. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta c(t)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  16. Goncalves VL, Nobre LS, Vicente JB et al (2006) Flavohemoglobin requires microaerophilic conditions for nitrosative protection of Staphylococcus aureus. FEBS Lett 580:1817–1821

    Article  CAS  PubMed  Google Scholar 

  17. Moormeier DE, Endres JL, Mann EE et al (2013) Use of microfluidic technology to analyze gene expression during Staphylococcus aureus biofilm formation reveals distinct physiological niches. Appl Environ Microbiol 79:3413–3424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Huggett J, Dheda K, Bustin S et al (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6:279–284

    Article  CAS  PubMed  Google Scholar 

  19. Valihrach L, Demnerova K (2012) Impact of normalization method on experimental outcome using RT-qPCR in Staphylococcus aureus. J Microbiol Methods 90:214–216

    Article  CAS  PubMed  Google Scholar 

  20. Patton TG, Yang SJ, Bayles KW (2006) The role of proton motive force in expression of the Staphylococcus aureus cid and lrg operons. Mol Microbiol 59:1395–1404

    Article  CAS  PubMed  Google Scholar 

  21. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported in part by a sub-award to K.C.R. from NIAID 1P01AI083211.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly C. Rice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lewis, A.M., Rice, K.C. (2014). Quantitative Real-Time PCR (qPCR) Workflow for Analyzing Staphylococcus aureus Gene Expression. In: Bose, J. (eds) The Genetic Manipulation of Staphylococci. Methods in Molecular Biology, vol 1373. Humana Press, New York, NY. https://doi.org/10.1007/7651_2014_193

Download citation

  • DOI: https://doi.org/10.1007/7651_2014_193

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3157-6

  • Online ISBN: 978-1-4939-3158-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics