Skip to main content

Complementation Plasmids, Inducible Gene-Expression Systems, and Reporters for Staphylococci

  • Protocol
  • First Online:
The Genetic Manipulation of Staphylococci

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1373))

Abstract

A cornucopia of methods and molecular tools is available for genetic modification of staphylococci, as shown for at least ten different species to date (Prax et al. Microbiology 159:421–435, 2013). This chapter reviews a number of frequently used vectors for complementation purposes that usually replicate in E. coli and staphylococci and differ in parameters including copy number, mode of replication, and sequence length. Systems for the artificial control of gene expression are described that are modulated by low-molecular-weight effectors such as metal cations, carbohydrates, and antibiotics. Finally, the usefulness of reporter proteins that exhibit enzymatic or autofluorescent characteristics in staphylococci is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prax M, Lee CY, Bertram R (2013) An update on the molecular genetics toolbox for staphylococci. Microbiology 159:421–435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. McNamara P (2008) Genetic manipulation of Staphylococcus aureus. In: Lindsay J (ed) Staphylococcus molecular genetics. Caister Academic Press, Norfolk, UK

    Google Scholar 

  3. Novick RP (1989) Staphylococcal plasmids and their replication. Annu Rev Microbiol 43:537–565

    Article  CAS  PubMed  Google Scholar 

  4. Brückner R (1992) A series of shuttle vectors for Bacillus subtilis and Escherichia coli. Gene 122:187–192

    Article  PubMed  Google Scholar 

  5. Brückner R, Zyprian E, Matzura H (1984) Expression of a chloramphenicol-resistance determinant carried on hybrid plasmids in gram-positive and gram-negative bacteria. Gene 32:151–160

    Article  PubMed  Google Scholar 

  6. Firth N, Apisiridej S, Berg T et al (2000) Replication of staphylococcal multiresistance plasmids. J Bacteriol 182:2170–2178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Grkovic S, Brown MH, Hardie KM et al (2003) Stable low-copy-number Staphylococcus aureus shuttle vectors. Microbiology 149:785–794

    Article  CAS  PubMed  Google Scholar 

  8. Charpentier E, Anton AI, Barry P et al (2004) Novel cassette-based shuttle vector system for gram-positive bacteria. Appl Environ Microbiol 70:6076–6085

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Corbisier P, Ji G, Nuyts G et al (1993) luxAB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid pI258. FEMS Microbiol Lett 110:231–238

    Article  CAS  PubMed  Google Scholar 

  10. Vandenesch F, Kornblum J, Novick RP (1991) A temporal signal, independent of agr, is required for hla but not spa transcription in Staphylococcus aureus. J Bacteriol 173:6313–6320

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Hussain M, Becker K, von Eiff C et al (2001) Identification and characterization of a novel 38.5-kilodalton cell surface protein of Staphylococcus aureus with extended-spectrum binding activity for extracellular matrix and plasma proteins. J Bacteriol 183:6778–6786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Peschel A, Ottenwälder B, Götz F (1996) Inducible production and cellular location of the epidermin biosynthetic enzyme EpiB using an improved staphylococcal expression system. FEMS Microbiol Lett 137:279–284

    Article  CAS  PubMed  Google Scholar 

  13. Krismer B (1999) Studium der Funktion der sekretierten Proteine SceA und SceB, Analyse des Galaktoseoperons galRKET und Konstruktion von Sekretions- und Expressionsvektoren in Staphylococcus carnosus. PhD thesis, University of Tübingen, Tübingen

    Google Scholar 

  14. Wieland KP, Wieland B, Götz F (1995) A promoter-screening plasmid and xylose-inducible, glucose-repressible expression vectors for Staphylococcus carnosus. Gene 158:91–96

    Article  CAS  PubMed  Google Scholar 

  15. Sizemore C, Wieland B, Götz F et al (1992) Regulation of Staphylococcus xylosus xylose utilization genes at the molecular level. J Bacteriol 174:3042–3048

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Hueck CJ, Hillen W, Saier MH Jr (1994) Analysis of a cis-active sequence mediating catabolite repression in gram-positive bacteria. Res Microbiol 145:503–518

    Article  CAS  PubMed  Google Scholar 

  17. Nega M, Dube L, Ziebandt AK et al (2014) Secretome analysis revealed adaptive and non-adaptive responses of the Staphylococcus carnosus femB mutant. Proteomics. doi: 10.1002/pmic.201400343

  18. Yansura DG, Henner DJ (1984) Use of the Escherichia coli lac repressor and operator to control gene expression in Bacillus subtilis. Proc Natl Acad Sci U S A 81:439–443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Geissendörfer M, Hillen W (1990) Regulated expression of heterologous genes in Bacillus subtilis using the Tn10 encoded tet regulatory elements. Appl Microbiol Biotechnol 33:657–663

    Article  PubMed  Google Scholar 

  20. Zhang L, Fan F, Palmer LM et al (2000) Regulated gene expression in Staphylococcus aureus for identifying conditional lethal phenotypes and antibiotic mode of action. Gene 255:297–305

    Article  CAS  PubMed  Google Scholar 

  21. Bertram R, Hillen W (2008) The application of Tet repressor in prokaryotic gene regulation and expression. Microb Biotechnol 1:2–16

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Ji Y, Marra A, Rosenberg M et al (1999) Regulated antisense RNA eliminates alpha-toxin virulence in Staphylococcus aureus infection. J Bacteriol 181:6585–6590

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Gründling A, Schneewind O (2007) Genes required for glycolipid synthesis and lipoteichoic acid anchoring in Staphylococcus aureus. J Bacteriol 189:2521–2530

    Article  PubMed Central  PubMed  Google Scholar 

  24. Gründling A, Schneewind O (2007) Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proc Natl Acad Sci U S A 104:8478–8483

    Article  PubMed Central  PubMed  Google Scholar 

  25. Bateman BT, Donegan NP, Jarry TM et al (2001) Evaluation of a tetracycline-inducible promoter in Staphylococcus aureus in vitro and in vivo and its application in demonstrating the role of sigB in microcolony formation. Infect Immun 69:7851–7857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Corrigan RM, Foster TJ (2009) An improved tetracycline-inducible expression vector for Staphylococcus aureus. Plasmid 61:126–129

    Article  CAS  PubMed  Google Scholar 

  27. Helle L, Kull M, Mayer S et al (2011) Vectors for improved Tet repressor-dependent gradual gene induction or silencing in Staphylococcus aureus. Microbiology 157:3314–3323

    Article  CAS  PubMed  Google Scholar 

  28. Xu HH, Trawick JD, Haselbeck RJ et al (2010) Staphylococcus aureus TargetArray: comprehensive differential essential gene expression as a mechanistic tool to profile antibacterials. Antimicrob Agents Chemother 54:3659–3670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Stary E, Gaupp R, Lechner S et al (2010) New architectures for Tet-on and Tet-off regulation in Staphylococcus aureus. Appl Environ Microbiol 76:680–687

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kamionka A, Bogdanska-Urbaniak J, Scholz O et al (2004) Two mutations in the tetracycline repressor change the inducer anhydrotetracycline to a corepressor. Nucleic Acids Res 32:842–847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Scholz O, Henssler EM, Bail J et al (2004) Activity reversal of Tet repressor caused by single amino acid exchanges. Mol Microbiol 53:777–789

    Article  CAS  PubMed  Google Scholar 

  32. Schofield DA, Westwater C, Hoel BD et al (2003) Development of a thermally regulated broad-spectrum promoter system for use in pathogenic gram-positive species. Appl Environ Microbiol 69:3385–3392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. D’Elia MA, Pereira MP, Chung YS et al (2006) Lesions in teichoic acid biosynthesis in Staphylococcus aureus lead to a lethal gain of function in the otherwise dispensable pathway. J Bacteriol 188:4183–4189

    Article  PubMed Central  PubMed  Google Scholar 

  34. Meighen EA (1993) Bacterial bioluminescence: organization, regulation, and application of the lux genes. FASEB J 7:1016–1022

    CAS  PubMed  Google Scholar 

  35. Murray RW, Melchior EP, Hagadorn JC et al (2001) Staphylococcus aureus cell extract transcription-translation assay: firefly luciferase reporter system for evaluating protein translation inhibitors. Antimicrob Agents Chemother 45:1900–1904

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Steidler L, Yu W, Fiers W et al (1996) The expression of the Photinus pyralis luciferase gene in Staphylococcus aureus Cowan I allows the development of a live amplifiable tool for immunodetection. Appl Environ Microbiol 62:2356–2359

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Meighen EA (1991) Molecular biology of bacterial bioluminescence. Microbiol Rev 55:123–142

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Mesak LR, Yim G, Davies J (2009) Improved lux reporters for use in Staphylococcus aureus. Plasmid 61:182–187

    Article  CAS  PubMed  Google Scholar 

  39. Francis KP, Joh D, Bellinger-Kawahara C et al (2000) Monitoring bioluminescent Staphylococcus aureus infections in living mice using a novel luxABCDE construct. Infect Immun 68:3594–3600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Malone CL, Boles BR, Lauderdale KJ et al (2009) Fluorescent reporters for Staphylococcus aureus. J Microbiol Methods 77:251–260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Cheung AL, Nast CC, Bayer AS (1998) Selective activation of sar promoters with the use of green fluorescent protein transcriptional fusions as the detection system in the rabbit endocarditis model. Infect Immun 66:5988–5993

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Qazi SN, Rees CE, Mellits KH et al (2001) Development of gfp vectors for expression in Listeria monocytogenes and other low G+C gram positive bacteria. Microb Ecol 41:301–309

    CAS  PubMed  Google Scholar 

  43. Franke GC, Dobinsky S, Mack D et al (2007) Expression and functional characterization of gfpmut3.1 and its unstable variants in Staphylococcus epidermidis. J Microbiol Methods 71:123–132

    Article  CAS  PubMed  Google Scholar 

  44. Andersen JB, Sternberg C, Poulsen LK et al (1998) New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64:2240–2246

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Pereira PM, Veiga H, Jorge AM et al (2010) Fluorescent reporters for studies of cellular localization of proteins in Staphylococcus aureus. Appl Environ Microbiol 76:4346–4353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Liese J, Rooijakkers SH, van Strijp JA et al (2012) Intravital two-photon microscopy of host-pathogen interactions in a mouse model of Staphylococcus aureus skin abscess formation. Cell Microbiol 15:891–909

    Article  PubMed  Google Scholar 

  47. Kahl BC, Goulian M, van Wamel W et al (2000) Staphylococcus aureus RN6390 replicates and induces apoptosis in a pulmonary epithelial cell line. Infect Immun 68:5385–5392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Paprotka K, Giese B, Fraunholz MJ (2010) Codon-improved fluorescent proteins in investigation of Staphylococcus aureus host pathogen interactions. J Microbiol Methods 83:82–86

    Article  CAS  PubMed  Google Scholar 

  49. Sastalla I, Chim K, Cheung GY et al (2009) Codon-optimized fluorescent proteins designed for expression in low-GC gram-positive bacteria. Appl Environ Microbiol 75:2099–2110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Pédelacq JD, Cabantous S, Tran T et al (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24:79–88

    Article  PubMed  Google Scholar 

  51. Yu W, Götz F (2012) Cell wall antibiotics provoke accumulation of anchored mCherry in the cross wall of Staphylococcus aureus. PLoS One 7:e30076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Kloos W, Schleifer KH, Götz F (1991) The genus Staphylococcus. In: Balows B, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, vol 2. Springer, London, pp 1369–1420

    Google Scholar 

  53. Halfmann G, Götz F, Lubitz W (1993) Expression of bacteriophage PhiX174 lysis gene E in Staphylococcus carnosus TM300. FEMS Microbiol Lett 108:139–143

    Article  CAS  PubMed  Google Scholar 

  54. Gauger T, Weihs F, Mayer S et al (2012) Intracellular monitoring of target protein production in Staphylococcus aureus by peptide tag-induced reporter fluorescence. Microb Biotechnol 5:129–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. D’Elia MA, Pereira MP, Brown ED (2009) Are essential genes really essential? Trends Microbiol 17:433–438

    Article  PubMed  Google Scholar 

  56. Sheehan BJ, Foster TJ, Dorman CJ et al (1992) Osmotic and growth-phase dependent regulation of the eta gene of Staphylococcus aureus: a role for DNA supercoiling. Mol Gen Genet 232:49–57

    Article  CAS  PubMed  Google Scholar 

  57. Wang PZ, Projan SJ, Leason KR et al (1987) Translational fusion with a secretory enzyme as an indicator. J Bacteriol 169:3082–3087

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Otto M, Süssmuth R, Jung G et al (1998) Structure of the pheromone peptide of the Staphylococcus epidermidis agr system. FEBS Lett 424:89–94

    Article  CAS  PubMed  Google Scholar 

  59. Ohlsen K, Koller KP, Hacker J (1997) Analysis of expression of the alpha-toxin gene (hla) of Staphylococcus aureus by using a chromosomally encoded hla::lacZ gene fusion. Infect Immun 65:3606–3614

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Arnaud M, Chastanet A, Debarbouille M (2004) New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl Environ Microbiol 70:6887–6891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the author’s lab was supported by grant BE4038/1 of the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Bertram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bertram, R. (2014). Complementation Plasmids, Inducible Gene-Expression Systems, and Reporters for Staphylococci. In: Bose, J. (eds) The Genetic Manipulation of Staphylococci. Methods in Molecular Biology, vol 1373. Humana Press, New York, NY. https://doi.org/10.1007/7651_2014_181

Download citation

  • DOI: https://doi.org/10.1007/7651_2014_181

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3157-6

  • Online ISBN: 978-1-4939-3158-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics