Skip to main content

Therapeutic Mesenchymal Stromal Cells: Where We Are Headed

  • Protocol
  • First Online:
Stem Cells and Good Manufacturing Practices

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1283))

Abstract

With a range of therapeutic uses, from diabetes and Crohn’s disease to wound repair, interest in the function, characterization, and expansion of mesenchymal stromal cells (MSCs) is growing rapidly. When considering the therapeutic use of MSCs, one must take into account a multitude of options including the ideal source of MSCs, the ideal donor, and the best means of expansion. Here we discuss different sources of MSCs, including cord blood, bone marrow, and adipose tissue, the option of using autologous and allogeneic donors, and finally we discuss GMP-applicable expansion protocols aimed at expanding MSCs for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedenstein AJ, Deriglasova UF, Kulagina NN et al (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2(2):83–92

    CAS  PubMed  Google Scholar 

  2. Pontikoglou C, Deschaseaux F, Sensebe L et al (2011) Bone marrow mesenchymal stem cells: biological properties and their role in hematopoiesis and hematopoietic stem cell transplantation. Stem Cell Rev 7(3):569–589

    Article  PubMed  Google Scholar 

  3. Auletta JJ, Deans RJ, Bartholomew AM (2012) Emerging roles for multipotent, bone marrow-derived stromal cells in host defense. Blood 119(8):1801–1809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505(7483):327–334

    Article  CAS  PubMed  Google Scholar 

  5. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  PubMed  Google Scholar 

  6. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  7. Kolf CM, Cho E, Tuan RS (2007) Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 9(1):204

    Article  PubMed Central  PubMed  Google Scholar 

  8. Simmons PJ, Torok-Storb B (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78(1):55–62

    CAS  PubMed  Google Scholar 

  9. Gronthos S, Zannettino AC, Hay SJ et al (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116(Pt 9):1827–1835

    Article  CAS  PubMed  Google Scholar 

  10. Delorme B, Ringe J, Gallay N et al (2008) Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood 111(5):2631–2635

    Article  CAS  PubMed  Google Scholar 

  11. Rozemuller H, Prins HJ, Naaijkens B et al (2010) Prospective isolation of mesenchymal stem cells from multiple mammalian species using cross-reacting anti-human monoclonal antibodies. Stem Cells Dev 19(12):1911–1921

    Article  CAS  PubMed  Google Scholar 

  12. Buhring HJ, Battula VL, Treml S et al (2007) Novel markers for the prospective isolation of human MSC. Ann N Y Acad Sci 1106:262–271

    Article  PubMed  Google Scholar 

  13. Quirici N, Soligo D, Bossolasco P et al (2002) Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp Hematol 30(7):783–791

    Article  CAS  PubMed  Google Scholar 

  14. Krampera M, Galipeau J, Shi Y et al (2013) Immunological characterization of multipotent mesenchymal stromal cells. The International Society for Cellular Therapy (ISCT) working proposal. Cytotherapy 15(9):1054–1061

    Article  PubMed  Google Scholar 

  15. Di Nicola M, Carlo-Stella C, Magni M et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838–3843

    Article  PubMed  Google Scholar 

  16. Spaggiari GM, Capobianco A, Abdelrazik H et al (2008) Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111(3):1327–1333

    Article  CAS  PubMed  Google Scholar 

  17. Kai S, Goto S, Tahara K et al (2003) Inhibition of indoleamine 2,3-dioxygenase suppresses NK cell activity and accelerates tumor growth. J Exp Ther Oncol 3(6):336–345

    Article  CAS  PubMed  Google Scholar 

  18. Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110(10):3499–3506

    Article  CAS  PubMed  Google Scholar 

  19. Augello A, Tasso R, Negrini SM et al (2005) Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol 35(5):1482–1490

    Article  CAS  PubMed  Google Scholar 

  20. Rutella S, Danese S, Leone G (2006) Tolerogenic dendritic cells: cytokine modulation comes of age. Blood 108(5):1435–1440

    Article  CAS  PubMed  Google Scholar 

  21. Maccario R, Podesta M, Moretta A et al (2005) Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica 90(4):516–525

    CAS  PubMed  Google Scholar 

  22. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822

    Article  CAS  PubMed  Google Scholar 

  23. Krampera M, Glennie S, Dyson J et al (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101(9):3722–3729

    Article  CAS  PubMed  Google Scholar 

  24. Tse WT, Pendleton JD, Beyer WM et al (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75(3):389–397

    Article  CAS  PubMed  Google Scholar 

  25. Rasmusson I, Ringden O, Sundberg B et al (2003) Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 76(8):1208–1213

    Article  PubMed  Google Scholar 

  26. Lazarus HM, Haynesworth SE, Gerson SL et al (1995) Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 16(4):557–564

    CAS  PubMed  Google Scholar 

  27. Lazarus HM, Koc ON, Devine SM et al (2005) Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 11(5):389–398

    Article  PubMed  Google Scholar 

  28. Forbes GM, Sturm MJ, Leong RW et al (2014) A phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn's disease refractory to biologic therapy. Clin Gastroenterol Hepatol 12(1):64–71

    Article  PubMed  Google Scholar 

  29. Le Blanc K, Rasmusson I, Sundberg B et al (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363(9419):1439–1441

    Article  PubMed  Google Scholar 

  30. Le Blanc K, Frassoni F, Ball L et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371(9624):1579–1586

    Article  PubMed  Google Scholar 

  31. Yin F, Battiwalla M, Ito S et al (2014) Bone marrow mesenchymal stromal cells to treat tissue damage in allogeneic stem cell transplant recipients: correlation of biological markers with clinical responses. Stem Cells 32(5):1278–1288

    Article  CAS  PubMed  Google Scholar 

  32. Martin PJ, Uberti JP, Soiffer RJ, Klingemann H, Waller EK, Daly AS, Herrmann RP, Kebriaei P (2010) Prochymal improves response rates in patients with steroid-refractory acute graft versus host disease (SR-GVHD) involving the liver and gut: results of a randomized, placebo-controlled, multicenter phase III trial in GVHD. Biol Blood Marrow Transplant 16(Suppl 2):169–170

    Article  Google Scholar 

  33. Galipeau J (2013) The mesenchymal stromal cells dilemma—does a negative phase III trial of random donor mesenchymal stromal cells in steroid-resistant graft-versus-host disease represent a death knell or a bump in the road? Cytotherapy 15(1):2–8

    Article  PubMed  Google Scholar 

  34. Research USDoHaHSFaDACfBEa (2011) Guidance for industry. Current good tissue practice (CGTP) and additional requirements for manufacturers of human cells, tissues, and cellular and tissue-based products (HCT/Ps)

    Google Scholar 

  35. Administration USDoHaHSFaD. Code of federal regulations title 21. Part 210 and 211

    Google Scholar 

  36. Hanley PJ, Mei Z, da Graca Cabreira-Hansen M et al (2013) Manufacturing mesenchymal stromal cells for phase I clinical trials. Cytotherapy 15(4):416–422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Francois M, Copland IB, Yuan S et al (2012) Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-gamma licensing. Cytotherapy 14(2):147–152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Sogaard M, Norgaard M, Schonheyder HC (2007) First notification of positive blood cultures and the high accuracy of the gram stain report. J Clin Microbiol 45(4):1113–1117

    Article  PubMed Central  PubMed  Google Scholar 

  39. Stirling P, Faroug R, Amanat S et al (2014) False-negative rate of gram-stain microscopy for diagnosis of septic arthritis: suggestions for improvement. Int J Microbiol 2014:830857

    Article  PubMed Central  PubMed  Google Scholar 

  40. Horwitz EM, Gordon PL, Koo WK et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A 99(13):8932–8937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Sabatino M, Ren J, David-Ocampo V et al (2012) The establishment of a bank of stored clinical bone marrow stromal cell products. J Transl Med 10:23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Sensebe L (2008) Clinical grade production of mesenchymal stem cells. Biomed Mater Eng 18(1 Suppl):S3–S10

    CAS  PubMed  Google Scholar 

  43. Gastens MH, Goltry K, Prohaska W et al (2007) Good manufacturing practice-compliant expansion of marrow-derived stem and progenitor cells for cell therapy. Cell Transplant 16(7):685–696

    Article  PubMed  Google Scholar 

  44. Sharma RR, Pollock K, Hubel A et al (2014) Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion 54(5):1418–1437

    Article  CAS  PubMed  Google Scholar 

  45. Santos F, Andrade PZ, Abecasis MM et al (2011) Toward a clinical-grade expansion of mesenchymal stem cells from human sources: a microcarrier-based culture system under xeno-free conditions. Tissue Eng Part C Methods 17(12):1201–1210

    Article  PubMed Central  PubMed  Google Scholar 

  46. Boo L, Selvaratnam L, Tai CC et al (2011) Expansion and preservation of multipotentiality of rabbit bone-marrow derived mesenchymal stem cells in dextran-based microcarrier spin culture. J Mater Sci Mater Med 22(5):1343–1356

    Article  CAS  PubMed  Google Scholar 

  47. Hanley PJ, Mei Z, Durett AG et al (2014) Efficient manufacturing of therapeutic mesenchymal stromal cells with the use of the quantum cell expansion system. Cytotherapy 16(8):1048–1058

    Article  CAS  PubMed  Google Scholar 

  48. Rojewski MT, Fekete N, Baila S et al (2013) GMP-compliant isolation and expansion of bone marrow-derived MSCs in the closed, automated device quantum cell expansion system. Cell Transplant 22(11):1981–2000

    Article  PubMed  Google Scholar 

  49. Roberts I, Baila S, Rice RB et al (2012) Scale-up of human embryonic stem cell culture using a hollow fibre bioreactor. Biotechnol Lett 34(12):2307–2315

    Article  CAS  PubMed  Google Scholar 

  50. Jones M, Varella-Garcia M, Skokan M et al (2013) Genetic stability of bone marrow-derived human mesenchymal stromal cells in the quantum system. Cytotherapy 15(11):1323–1339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Caplan AI (1994) The mesengenic process. Clin Plast Surg 21(3):429–435

    CAS  PubMed  Google Scholar 

  52. Choudhery MS, Badowski M, Muise A et al (2014) Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. J Transl Med 12:8

    Article  PubMed Central  PubMed  Google Scholar 

  53. Baer PC, Geiger H (2012) Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells Int 2012:812693

    Article  PubMed Central  PubMed  Google Scholar 

  54. Najar M, Raicevic G, Boufker HI et al (2010) Mesenchymal stromal cells use PGE2 to modulate activation and proliferation of lymphocyte subsets: Combined comparison of adipose tissue, Wharton's Jelly and bone marrow sources. Cell Immunol 264(2):171–179

    Article  CAS  PubMed  Google Scholar 

  55. Arana M, Mazo M, Aranda P et al (2013) Adipose tissue-derived mesenchymal stem cells: isolation, expansion, and characterization. Methods Mol Biol 1036:47–61

    Article  PubMed  Google Scholar 

  56. Ziai WC, Tuhrim S, Lane K et al (2013) A multicenter, randomized, double-blinded, placebo-controlled phase III study of clot lysis evaluation of accelerated resolution of intraventricular hemorrhage (CLEAR III). Int J Stroke 9(4):536–542

    Article  PubMed  Google Scholar 

  57. Peters R, Wolf MJ, van den Broek M et al (2010) Efficient generation of multipotent mesenchymal stem cells from umbilical cord blood in stroma-free liquid culture. PLoS One 5(12):e15689

    Article  PubMed Central  PubMed  Google Scholar 

  58. Bieback K, Kern S, Kluter H et al (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22(4):625–634

    Article  PubMed  Google Scholar 

  59. Kern S, Eichler H, Stoeve J et al (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5):1294–1301

    Article  CAS  PubMed  Google Scholar 

  60. Crisostomo PR, Wang M, Wairiuko GM et al (2006) High passage number of stem cells adversely affects stem cell activation and myocardial protection. Shock 26(6):575–580

    Article  CAS  PubMed  Google Scholar 

  61. Hanley PJ (2014) Finessing the manufacture of mesenchymal stromal cells. Cytotherapy 16(6):711–712

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Hanley Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hanley, P.J. (2014). Therapeutic Mesenchymal Stromal Cells: Where We Are Headed. In: Turksen, K. (eds) Stem Cells and Good Manufacturing Practices. Methods in Molecular Biology, vol 1283. Humana Press, New York, NY. https://doi.org/10.1007/7651_2014_175

Download citation

  • DOI: https://doi.org/10.1007/7651_2014_175

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2434-9

  • Online ISBN: 978-1-4939-2435-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics