Experimental Autoimmune Encephalomyelitis in Marmosets

  • S. Anwar JagessarEmail author
  • Karin Dijkman
  • Jordon Dunham
  • Bert A. ‘t Hart
  • Yolanda S. Kap
Part of the Methods in Molecular Biology book series (MIMB, volume 1304)


Experimental autoimmune encephalomyelitis (EAE) in the common marmoset, a small-bodied Neotropical primate, is a well-known and validated animal model for multiple sclerosis (MS). This model can be used for exploratory research, i.e., investigating the pathogenic mechanisms involved in MS, and applied research, testing the efficacy of new potential drugs.

In this chapter, we will describe a method to induce EAE in the marmoset. In addition, we will explain the most common immunological techniques involved in the marmoset EAE research, namely isolation of mononuclear cells (MNC) from peripheral blood and lymphoid tissue, assaying T cell proliferation by thymidine incorporation, MNC phenotyping by flow cytometry, antibody measurement by ELISA, generation of B cell lines and antigen-specific T cell lines, and assaying cytotoxic T cells.


Callithrix jacchus Marmoset Experimental autoimmune encephalomyelitis (EAE) Multiple sclerosis Myelin oligodendrocyte glycoprotein (MOG) Immune profiling Flow cytometry Mononuclear cells Cytotoxicity T cell proliferation 


  1. 1.
    Kap YS, Laman JD, ‘t Hart BA (2010) Experimental autoimmune encephalomyelitis in the common marmoset, a bridge between rodent EAE and multiple sclerosis for immunotherapy development. J Neuroimmune Pharmacol 5:220–230PubMedCrossRefGoogle Scholar
  2. 2.
    Haig D (1999) What is a marmoset? Am J Primatol 49:285–296PubMedCrossRefGoogle Scholar
  3. 3.
    Kap YS, van Driel N, Blezer E et al (2010) Late B cell depletion with a human anti-human CD20 IgG1kappa monoclonal antibody halts the development of experimental autoimmune encephalomyelitis in marmosets. J Immunol 185:3990–4003PubMedCrossRefGoogle Scholar
  4. 4.
    Jagessar SA, Heijmans N, Bauer J et al (2012) B-cell depletion abrogates T cell-mediated demyelination in an antibody-nondependent common marmoset experimental autoimmune encephalomyelitis model. J Neuropathol Exp Neurol 71:716–728PubMedCrossRefGoogle Scholar
  5. 5.
    Jagessar SA, Smith PA, Blezer E et al (2008) Autoimmunity against myelin oligodendrocyte glycoprotein is dispensable for the initiation although essential for the progression of chronic encephalomyelitis in common marmosets. J Neuropathol Exp Neurol 67:326–340PubMedCrossRefGoogle Scholar
  6. 6.
    Kap YS, Smith P, Jagessar SA et al (2008) Fast progression of recombinant human myelin/oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis in marmosets is associated with the activation of MOG34-56-specific cytotoxic T cells. J Immunol 180:1326–1337PubMedCrossRefGoogle Scholar
  7. 7.
    Jagessar SA, Kap YS, Heijmans N et al (2010) Induction of progressive demyelinating autoimmune encephalomyelitis in common marmoset monkeys using MOG34-56 peptide in incomplete freund adjuvant. J Neuropathol Exp Neurol 69:372–385PubMedCrossRefGoogle Scholar
  8. 8.
    Brok HP, Hornby RJ, Griffiths GD et al (2001) An extensive monoclonal antibody panel for the phenotyping of leukocyte subsets in the common marmoset and the cotton-top tamarin. Cytometry 45:294–303PubMedCrossRefGoogle Scholar
  9. 9.
    Raab-Traub N, Dambaugh T, Kieff E (1980) DNA of Epstein-Barr virus VIII: B95-8, the previous prototype, is an unusual deletion derivative. Cell 22:257–267PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • S. Anwar Jagessar
    • 1
    Email author
  • Karin Dijkman
    • 1
  • Jordon Dunham
    • 1
  • Bert A. ‘t Hart
    • 1
  • Yolanda S. Kap
    • 1
  1. 1.Department of ImmunobiologyBiomedical Primate Research CentreRijswijkThe Netherlands

Personalised recommendations