Skip to main content

Scalable Ex Vivo Expansion of Human Mesenchymal Stem/Stromal Cells in Microcarrier-Based Stirred Culture Systems

  • Protocol
  • First Online:
Stem Cells and Good Manufacturing Practices

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1283))

Abstract

The clinical demand for human mesenchymal stem/stromal cells (MSC) drives the need for reproducible, cost-effective, and good manufacturing practices (GMP)-compliant ex vivo expansion protocols. Bioprocess engineering strategies, namely controlled stirred bioreactor systems combined with the use of xenogeneic(xeno)-free materials, provide proper tools to develop and optimize cell manufacturing for the rapid expansion of human MSC for cellular therapies. Herein we describe a microcarrier-based stirred culture system operating under xeno-free conditions using a controlled stirred-tank bioreactor for an efficient and controlled ex vivo expansion of human MSC. This culture platform can be applied to MSC from different human sources, as well as different microcarriers and xeno-free medium formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kirouac DC, Zandstra PW (2008) The systematic production of cells for cell therapies. Cell Stem Cell 3:369–381

    Article  CAS  PubMed  Google Scholar 

  2. Kehoe DE, Jing D, Lock LT et al (2010) Scalable stirred-suspension bioreactor culture. Tissue Eng Part A 16:405–421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Rodrigues CAV, Fernandes TG, Diogo MM et al (2011) Stem cell cultivation in bioreactors. Biotechnol Adv 29:815–829

    Article  CAS  PubMed  Google Scholar 

  4. Klingemann H, Matzilevich D, Marchand J (2008) Mesenchymal stem cells—sources and clinical applications. Transfus Med Hemother 35:272–277

    Article  PubMed Central  PubMed  Google Scholar 

  5. Singer NG, Caplan AI (2011) Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol 6:457–478

    Article  CAS  PubMed  Google Scholar 

  6. Atoui R, Chiu RCJ (2012) Concise review: immunomodulatory properties of mesenchymal stem cells in cellular transplantation : update, controversies, and unknowns. Stem Cells Transl Med 1:200–205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Dittmar T, Entschladen F (2013) Migratory properties of mesenchymal stem cells. Adv Biochem Eng Biotechnol 129:117–136

    CAS  PubMed  Google Scholar 

  8. Parekkadan B, Milwid JM (2010) Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng 12:87–117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Tarte K, Gaillard J, Lataillade J et al (2010) Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 115:1549–1553

    Article  CAS  PubMed  Google Scholar 

  10. Migliaccio G, Pintus C (2012) Role of the EU framework in regulation of stem cell-based products. Adv Biochem Eng Biotechnol 30:287–299. doi:10.1007/10_2012_142

    Google Scholar 

  11. Eibes G, dos Santos F, Andrade PZ et al (2010) Maximizing the ex vivo expansion of human mesenchymal stem cells using a microcarrier-based stirred culture system. J Biotechnol 146:194–197

    Article  CAS  PubMed  Google Scholar 

  12. dos Santos F, Andrade PZ, Abecasis MM et al (2011) Toward a clinical-grade expansion of mesenchymal stem cells from human sources: a microcarrier-based culture system under xeno-free conditions. Tissue Eng Part C Methods 17:1201–1210

    Article  PubMed Central  PubMed  Google Scholar 

  13. Schop D, Borgart E, Janssen FW et al (2010) Expansion of human mesenchymal stromal cells on microcarriers: growth and metabolism. J Tissue Eng Regen Med 4:131–140

    Article  CAS  PubMed  Google Scholar 

  14. Yuan Y, Kallos MS, Hunter C et al (2012) Improved expansion of human bone marrow-derived mesenchymal stem cells in microcarrier-based suspension culture. J Tissue Eng Regen Med 8:210–225. doi:10.1002/term.1515

    Article  PubMed  Google Scholar 

  15. Hewitt CJ, Lee K, Nienow AW et al (2011) Expansion of human mesenchymal stem cells on microcarriers. Biotechnol Lett 33:2325–2335

    Article  CAS  PubMed  Google Scholar 

  16. Miwa H, Hashimoto Y, Tensho K et al (2012) Xeno-free proliferation of human bone marrow mesenchymal stem cells. Cytotechnology 64:301–308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kinzebach S, Bieback K (2012) Expansion of mesenchymal stem/stromal cells under xenogenic-free culture conditions. Adv Biochem Eng Biotechnol 129:33–57. doi:10.1007/10_2012_134

    Google Scholar 

  18. Lindroos B, Boucher S, Chase L et al (2009) Serum-free, xeno-free culture media maintain the proliferation rate and multipotentiality of adipose stem cells in vitro. Cytotherapy 11:958–972

    Article  CAS  PubMed  Google Scholar 

  19. Jung S, Sen A, Rosenberg L et al (2010) Identification of growth and attachment factors for the serum-free isolation and expansion of human mesenchymal stromal cells. Cytotherapy 12:637–657

    Article  CAS  PubMed  Google Scholar 

  20. dos Santos F, Campbell A, Fernandes-Platzgummer A et al (2014) A xenogeneic-free bioreactor system for the clinical-scale expansion of human mesenchymal stem/stromal cells. Biotechnol Bioeng 111:1116–1127. doi:10.1002/bit.25187

    Article  PubMed  Google Scholar 

  21. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  22. Carmelo JG (2013) Optimizing the production of human mesenchymal stem/stromal cells in xeno-free microcarrier-based reactor systems. MSc Dissertation, Instituto Superior Técnico, Universidade de Lisboa, Lisboa

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia Lobato da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Carmelo, J.G., Fernandes-Platzgummer, A., Cabral, J.M.S., da Silva, C.L. (2014). Scalable Ex Vivo Expansion of Human Mesenchymal Stem/Stromal Cells in Microcarrier-Based Stirred Culture Systems. In: Turksen, K. (eds) Stem Cells and Good Manufacturing Practices. Methods in Molecular Biology, vol 1283. Humana Press, New York, NY. https://doi.org/10.1007/7651_2014_100

Download citation

  • DOI: https://doi.org/10.1007/7651_2014_100

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2434-9

  • Online ISBN: 978-1-4939-2435-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics