Skip to main content

Microfluidic Device to Culture 3D In Vitro Human Capillary Networks

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1202))

Abstract

Models that aim to recapitulate the dynamic in vivo features of the microcirculation are crucial for studying vascularization. Cells in vivo respond not only to biochemical cues (e.g., growth factor gradients) but also sense mechanical cues (e.g., interstitial flow, vessel perfusion). Integrating the response of cells, the stroma, and the circulation in a dynamic 3D setting will create an environment suitable for the exploration of many fundamental vascularization processes. Here in this chapter, we describe an in vivo-inspired microenvironment that is conducive to the development of perfused human capillaries.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Newman AC, Nakatsu MN, Chou W, Gershon PD, Hughes CCW (2011) The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. Mol Biol Cell 22(20):3791–3800. doi:10.1091/mbc.E11-05-0393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Montesano R, Pepper MS, Orci L (1993) Paracrine induction of angiogenesis in vitro by Swiss 3T3 fibroblasts. J Cell Sci 105(4):1013–1024

    CAS  PubMed  Google Scholar 

  3. Moya ML, Hsu YH, Lee AP, Hughes CC, George SC (2013) In vitro perfused human capillary networks. Tissue Eng Part C Methods 19(9):730–737. doi:10.1089/ten.TEC.2012.0430

    Article  CAS  PubMed  Google Scholar 

  4. Vickerman V, Blundo J, Chung S, Kamm R (2008) Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 8(9):1468–1477. doi:10.1039/b802395f

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hsu YH, Moya ML, Abiri P, Hughes CC, George SC, Lee AP (2013) Full range physiological mass transport control in 3D tissue cultures. Lab Chip 13(1):81–89. doi:10.1039/c2lc40787f

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hsu Y-H, Moya ML, Hughes CCW, George SC, Lee AP (2013) A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays. Lab Chip 13(15):2990–2998. doi:10.1039/c3lc50424g

    Article  CAS  PubMed  Google Scholar 

  7. Kim S, Lee H, Chung M, Jeon NL (2013) Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13(8):1489–1500. doi:10.1039/c3lc41320a

    Article  CAS  PubMed  Google Scholar 

  8. Song JW, Bazou D, Munn LL (2012) Anastomosis of endothelial sprouts forms new vessels in a tissue analogue of angiogenesis. Integr Biol (Camb) 4(8):857–862. doi:10.1039/c2ib20061a

    Article  CAS  Google Scholar 

  9. Whitesides GM, Stroock AD (2001) Flexible methods for microfluidics. Phys Today 54(6):42–48. doi:10.1063/1.1387591

    Article  CAS  Google Scholar 

  10. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70(23):4974–4984. doi:10.1021/Ac980656z

    Article  CAS  PubMed  Google Scholar 

  11. Chen X, Aledia AS, Ghajar CM, Griffith CK, Putnam AJ, Hughes CC, George SC (2009) Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng Part A 15(6):1363–1371. doi:10.1089/ten.tea.2008.0314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ghajar CM, Blevins KS, Hughes CC, George SC, Putnam AJ (2006) Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Eng 12(10):2875–2888. doi:10.1089/ten.2006.12.2875

    Article  CAS  PubMed  Google Scholar 

  13. Chen XF, Aledia AS, Popson SA, Him L, Hughes CCW, George SC (2010) Rapid Anastomosis of Endothelial Progenitor Cell-Derived Vessels with Host Vasculature Is Promoted by a High Density of Cotransplanted Fibroblasts. Tissue Eng Part A 16(2):585–594. doi:10.1089/Ten.Tea.2009.0491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven C. George .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Moya, M.L., Alonzo, L.F., George, S.C. (2013). Microfluidic Device to Culture 3D In Vitro Human Capillary Networks. In: Vunjak-Novakovic, G., Turksen, K. (eds) Biomimetics and Stem Cells. Methods in Molecular Biology, vol 1202. Humana Press, New York, NY. https://doi.org/10.1007/7651_2013_36

Download citation

  • DOI: https://doi.org/10.1007/7651_2013_36

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1331-2

  • Online ISBN: 978-1-4939-1332-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics