Skip to main content

Extracellular Matrix Mimetic Peptide Scaffolds for Neural Stem Cell Culture and Differentiation

  • Protocol
  • First Online:
Biomimetics and Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1202))

Abstract

Self-assembled peptide nanofibers form three-dimensional networks that are quite similar to fibrous extracellular matrix (ECM) in their physical structure. By incorporating short peptide sequences derived from ECM proteins, these nanofibers provide bioactive platforms for cell culture studies. This protocol provides information about preparation and characterization of self-assembled peptide nanofiber scaffolds, culturing of neural stem cells (NSCs) on these scaffolds, and analysis of cell behavior. As cell behavior analyses, viability and proliferation of NSCs as well as investigation of differentiation by immunocytochemistry, qRT-PCR, western blot, and morphological analysis on ECM mimetic peptide nanofiber scaffolds are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Temple S (2001) The development of neural stem cells. Nature 414(6859):112–117

    Article  CAS  PubMed  Google Scholar 

  2. Einstein O, Ben-Hur T (2008) The changing face of neural stem cell therapy in neurologic diseases. Arch Neurol 65(4):452–456

    Article  PubMed  Google Scholar 

  3. Yuan T et al (2013) Human induced pluripotent stem cell-derived neural stem cells survive, migrate, differentiate, and improve neurological function in a rat model of middle cerebral artery occlusion. Stem Cell Res Ther 4(3):73

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Falk A et al (2012) Capture of neuroepithelial-like stem cells from pluripotent stem cells provides a versatile system for in vitro production of human neurons. PLOS One 7(1)

    Google Scholar 

  5. Thier M et al (2012) Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 10(4):473–479

    Article  CAS  PubMed  Google Scholar 

  6. Ring K et al (2012) Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11(1):100–109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Sharma K, Selzer M, Li S (2012) Scar-mediated inhibition and CSPG receptors in the CNS. Exp Neurol 237(2):370–378

    Article  CAS  PubMed  Google Scholar 

  8. Toksoz S, Mammadov R, Tekinay A, Guler M (2011) Electrostatic effects on nanofiber formation of self-assembling peptide amphiphiles. J Colloid Interface Sci 356(1):131–137

    Article  CAS  PubMed  Google Scholar 

  9. Mammadov B, Mammadov R, Guler M, Tekinay A (2012) Cooperative effect of heparan sulfate and laminin mimetic peptide nanofibers on the promotion of neurite outgrowth. Acta Biomater 8(6):2077–2086

    Article  CAS  PubMed  Google Scholar 

  10. Nishida T, Yasumoto K, Otori T, Desaki J (1988) The network structure of corneal fibroblasts in the rat as revealed by scanning electron-microscopy. Invest Ophthalmol Vis Sci 29(12):1887–1890

    CAS  PubMed  Google Scholar 

  11. Guler M et al (2006) Presentation of RGDS epitopes on self-assembled nanofibers of branched peptide amphiphiles. Biomacromolecules 7(6):1855–1863

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Anderson J et al (2009) Osteogenic differentiation of human mesenchymal stem cells directed by extracellular matrix-mimicking ligands in a biomimetic self-assembled peptide amphiphile nanomatrix. Biomacromolecules 10(10):2935–2944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Sur S et al (2012) A hybrid nanofiber matrix to control the survival and maturation of brain neurons. Biomaterials 33(2):545–555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ceylan H, Tekinay A, Guler M (2011) Selective adhesion and growth of vascular endothelial cells on bioactive peptide nanofiber functionalized stainless steel surface. Biomaterials 32(34):8797–8805

    Article  CAS  PubMed  Google Scholar 

  15. Silva G et al (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303(5662):1352–1355

    Article  CAS  PubMed  Google Scholar 

  16. Marchenko S, Flanagan L (2007) Immunocytochemistry: human neural stem cells. J Vis Exp (7):267

    Google Scholar 

  17. Sur S, Newcomb CJ, Webber MJ, Stupp SI (2013) Tuning supramolecular mechanics to guide neuron development. Biomaterials 34(20):4749–4757

    Article  CAS  PubMed  Google Scholar 

  18. Mammadov R, Tekinay A, Dana A, Guler M (2012) Microscopic characterization of peptide nanostructures. Micron 43(2–3):69–84

    Article  CAS  PubMed  Google Scholar 

  19. Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60(4):585–595

    Article  CAS  PubMed  Google Scholar 

  20. Caccamo D et al (1989) Immunohistochemistry of a spontaneous murine ovarian teratoma with neuroepithelial differentiation. Neuron-associated beta-tubulin as a marker for primitive neuroepithelium. Lab Invest 60(3):390–398

    CAS  PubMed  Google Scholar 

  21. Matus A (1988) Microtubule-associated proteins: their potential role in determining neuronal morphology. Annu Rev Neurosci 11:29–44

    Article  CAS  PubMed  Google Scholar 

  22. Svendsen CN, Bhattacharyya A, Tai YT (2001) Neurons from stem cells: preventing an identity crisis. Nat Rev Neurosci 2(11):831–834

    Article  CAS  PubMed  Google Scholar 

  23. Pixley SK, Kobayashi Y, de Vellis J (1984) Monoclonal antibody to intermediate filament proteins in astrocytes. J Neurosci Res 12(4):525–541

    Article  CAS  PubMed  Google Scholar 

  24. Rostami A et al (1984) Generation and biological properties of a monoclonal antibody to galactocerebroside. Brain Res 298(2):203–208

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

B.M. is supported by Scientific and Technological Research Council of Turkey (TUBITAK) grant number 111M410. M.O.G and A.B..T. acknowledge support from the Turkish Academy of Sciences Distinguished Young Scientist Award (TUBA-GEBIP).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mustafa O. Guler or Ayse B. Tekinay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mammadov, B., Guler, M.O., Tekinay, A.B. (2013). Extracellular Matrix Mimetic Peptide Scaffolds for Neural Stem Cell Culture and Differentiation. In: Vunjak-Novakovic, G., Turksen, K. (eds) Biomimetics and Stem Cells. Methods in Molecular Biology, vol 1202. Humana Press, New York, NY. https://doi.org/10.1007/7651_2013_35

Download citation

  • DOI: https://doi.org/10.1007/7651_2013_35

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1331-2

  • Online ISBN: 978-1-4939-1332-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics