Skip to main content

The Delivery and Evaluation of RNAi Therapeutics for Heterotopic Ossification Pathologies

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1202))

Abstract

RNA interference (RNAi) is a powerful tool being used to develop therapies for pathologies caused by gene overexpression. Heterotopic ossification pathologies such as trauma-induced heterotopic ossification and fibrodysplasia ossificans progressiva may be treatable with an RNAi approach. However, there is a lack of consensus in literature regarding the delivery conditions and evaluation of RNAi therapeutics in these disease models. Here, we describe in vitro protocols for the delivery of polymer-based RNAi therapeutics as well as a streamlined strategy for the assessment of osteoblast lineage progression due to dysregulated bone morphogenetic protein signaling. This strategy focuses on the quantification of early-stage osteoblast transcription factors RUNX2 and OSX, followed by the measurement of alkaline phosphatase activity and late-stage matrix deposition.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Pohl F, Hassel S, Nohe A, Flentje M, Knaus P, Sebald W, Koelbl O (2003) Radiation-induced suppression of the Bmp2 signal transduction pathway in the pluripotent mesenchymal cell line C2C12: an in vitro model for prevention of heterotopic ossification by radiotherapy. Radiat Res 159(3):345–350

    Article  CAS  PubMed  Google Scholar 

  2. Lin L, Chen L, Wang H, Wei X, Fu X, Zhang J, Ma K, Zhou C, Yu C (2006) Adenovirus-mediated transfer of siRNA against Runx2/Cbfa1 inhibits the formation of heterotopic ossification in animal model. Biochem Biophys Res Commun 349(2):564–572. doi:10.1016/j.bbrc.2006.08.089

    Article  CAS  PubMed  Google Scholar 

  3. Sakurai T, Sawada Y, Yoshimoto M, Kawai M, Miyakoshi J (2007) Radiation-induced reduction of osteoblast differentiation in C2C12 cells. J Radiat Res 48(6):515–521

    Article  CAS  PubMed  Google Scholar 

  4. Yu PB, Deng DY, Lai CS, Hong CC, Cuny GD, Bouxsein ML, Hong DW, McManus PM, Katagiri T, Sachidanandan C, Kamiya N, Fukuda T, Mishina Y, Peterson RT, Bloch KD (2008) BMP type I receptor inhibition reduces heterotopic [corrected] ossification. Nat Med 14(12):1363–1369. doi:10.1038/nm.1888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Fukuda T, Scott G, Komatsu Y, Araya R, Kawano M, Ray MK, Yamada M, Mishina Y (2006) Generation of a mouse with conditionally activated signaling through the BMP receptor, ALK2. Genesis 44(4):159–167. doi:10.1002/dvg.20201

    Article  CAS  PubMed  Google Scholar 

  6. Chakkalakal SA, Zhang D, Culbert AL, Convente MR, Caron RJ, Wright AC, Maidment AD, Kaplan FS, Shore EM (2012) An Acvr1 R206H knock-in mouse has fibrodysplasia ossificans progressiva. J Bone Miner Res 27(8):1746–1756. doi:10.1002/jbmr.1637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Huang W, Carlsen B, Rudkin G, Berry M, Ishida K, Yamaguchi DT, Miller TA (2004) Osteopontin is a negative regulator of proliferation and differentiation in MC3T3-E1 pre-osteoblastic cells. Bone 34(5):799–808. doi:10.1016/j.bone.2003.11.027

    Article  CAS  PubMed  Google Scholar 

  8. Hassan MQ, Javed A, Morasso MI, Karlin J, Montecino M, van Wijnen AJ, Stein GS, Stein JL, Lian JB (2004) Dlx3 transcriptional regulation of osteoblast differentiation: temporal recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins to chromatin of the osteocalcin gene. Mol Cell Biol 24(20):9248–9261. doi:10.1128/MCB.24.20.9248-9261.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Chen D, Harris MA, Rossini G, Dunstan CR, Dallas SL, Feng JQ, Mundy GR, Harris SE (1997) Bone morphogenetic protein 2 (BMP-2) enhances BMP-3, BMP-4, and bone cell differentiation marker gene expression during the induction of mineralized bone matrix formation in cultures of fetal rat calvarial osteoblasts. Calcif Tissue Int 60(3):283–290

    Article  CAS  PubMed  Google Scholar 

  10. Hassan MQ, Tare RS, Lee SH, Mandeville M, Morasso MI, Javed A, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2006) BMP2 commitment to the osteogenic lineage involves activation of Runx2 by DLX3 and a homeodomain transcriptional network. J Biol Chem 281(52):40515–40526. doi:10.1074/jbc.M604508200

    Article  CAS  PubMed  Google Scholar 

  11. Ulsamer A, Ortuno MJ, Ruiz S, Susperregui AR, Osses N, Rosa JL, Ventura F (2008) BMP-2 induces Osterix expression through up-regulation of Dlx5 and its phosphorylation by p38. J Biol Chem 283(7):3816–3826. doi:10.1074/jbc.M704724200

    Article  CAS  PubMed  Google Scholar 

  12. Cho TJ, Gerstenfeld LC, Einhorn TA (2002) Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res 17(3):513–520. doi:10.1359/jbmr.2002.17.3.513

    Article  CAS  PubMed  Google Scholar 

  13. Gurkan UA, Gargac J, Akkus O (2010) The sequential production profiles of growth factors and their relations to bone volume in ossifying bone marrow explants. Tissue Eng Part A 16(7):2295–2306. doi:10.1089/ten.TEA.2009.0565

    Article  CAS  PubMed  Google Scholar 

  14. Prince M, Banerjee C, Javed A, Green J, Lian JB, Stein GS, Bodine PV, Komm BS (2001) Expression and regulation of Runx2/Cbfa1 and osteoblast phenotypic markers during the growth and differentiation of human osteoblasts. J Cell Biochem 80(3):424–440

    Article  CAS  PubMed  Google Scholar 

  15. Shea CM, Edgar CM, Einhorn TA, Gerstenfeld LC (2003) BMP treatment of C3H10T1/2 mesenchymal stem cells induces both chondrogenesis and osteogenesis. J Cell Biochem 90(6):1112–1127. doi:10.1002/jcb.10734

    Article  CAS  PubMed  Google Scholar 

  16. Cho HY, Srinivasan A, Hong J, Hsu E, Liu S, Shrivats A, Kwak D, Bohaty AK, Paik HJ, Hollinger JO, Matyjaszewski K (2011) Synthesis of biocompatible PEG-Based star polymers with cationic and degradable core for siRNA delivery. Biomacromolecules 12(10):3478–3486. doi:10.1021/bm2006455

    Article  CAS  PubMed  Google Scholar 

  17. Averick SE, Paredes E, Irastorza A, Shrivats AR, Srinivasan A, Siegwart DJ, Magenau AJ, Cho HY, Hsu E, Averick AA, Kim J, Liu S, Hollinger JO, Das SR, Matyjaszewski K (2012) Preparation of cationic nanogels for nucleic acid delivery. Biomacromolecules 13(11):3445–3449. doi:10.1021/bm301166s

    Article  CAS  PubMed  Google Scholar 

  18. McNaughton BR, Cronican JJ, Thompson DB, Liu DR (2009) Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins. Proc Natl Acad Sci U S A 106(15):6111–6116. doi:10.1073/pnas.0807883106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Turchinovich A, Zoidl G, Dermietzel R (2010) Non-viral siRNA delivery into the mouse retina in vivo. BMC Ophthalmol 10:25. doi:10.1186/1471-2415-10-25

    Article  PubMed Central  PubMed  Google Scholar 

  20. Komori T (2006) Regulation of osteoblast differentiation by transcription factors. J Cell Biochem 99(5):1233–1239. doi:10.1002/jcb.20958

    Article  CAS  PubMed  Google Scholar 

  21. Franceschi RT, Xiao G (2003) Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J Cell Biochem 88(3):446–454. doi:10.1002/jcb.10369

    Article  CAS  PubMed  Google Scholar 

  22. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108. doi:10.1038/nprot.2008.73

    Article  CAS  PubMed  Google Scholar 

  23. Wang YH, Liu Y, Maye P, Rowe DW (2006) Examination of mineralized nodule formation in living osteoblastic cultures using fluorescent dyes. Biotechnol Prog 22(6):1697–1701. doi:10.1021/bp060274b

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Stephens AS, Stephens SR, Morrison NA (2011) Internal control genes for quantitative RT-PCR expression analysis in mouse osteoblasts, osteoclasts and macrophages. BMC Res Notes 4:410. doi:10.1186/1756-0500-4-410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):RESEARCH0034

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by Department of Defense grant W81XWH-11-2-0073, through the Defense Medical Research and Development Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey O. Hollinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Shrivats, A.R., Hollinger, J.O. (2013). The Delivery and Evaluation of RNAi Therapeutics for Heterotopic Ossification Pathologies. In: Vunjak-Novakovic, G., Turksen, K. (eds) Biomimetics and Stem Cells. Methods in Molecular Biology, vol 1202. Humana Press, New York, NY. https://doi.org/10.1007/7651_2013_34

Download citation

  • DOI: https://doi.org/10.1007/7651_2013_34

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1331-2

  • Online ISBN: 978-1-4939-1332-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics