Genome-Wide Variation Analysis of Yersinia pestis

  • Chao Yang
  • Yujun Cui
Part of the Springer Protocols Handbooks book series (SPH)


Compared with traditional molecular techniques that target limited numbers of loci, a genome-wide analysis can provide the greatest resolution of genetic variation. Therefore, it has promoted advances in many fields, including population genetics, evolution, and molecular epidemiology. With the rapid development of the next-generation sequencing technology, the cost, manpower, and time required for whole-genome analyses have been reduced, and these analyses are now affordable to regular biological and medical laboratories. Therefore, a wider range of applications of genome-wide analyses is expected, and greater output should be generated in coming years. Here, we introduce the basic protocol for a genome-wide variation analysis of Yersinia pestis, the plague pathogen, which has a genome of 4.6 Mb, based on sequencing data generated with a high-throughput short-read sequencing platform. The protocol only involves the in silico processes, including genome assembly and annotation, variation detection, and phylogeny reconstruction.

Key words

Yersinia pestis Genome-wide analysis Sequencing Phylogenetic analysis 


  1. 1.
    Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Carniel E (1999) Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 96(24):14043–14048CrossRefPubMedGoogle Scholar
  2. 2.
    Achtman M, Morelli G, Zhu P, Wirth T, Diehl I, Kusecek B, Vogler AJ, Wagner DM, Allender CJ, Easterday WR et al (2004) Microevolution and history of the plague bacillus, Yersinia pestis. Proc Natl Acad Sci USA 101(51):17837–17842CrossRefPubMedGoogle Scholar
  3. 3.
    Li Y, Dai E, Cui Y, Li M, Zhang Y, Wu M, Zhou D, Guo Z, Dai X, Cui B et al (2008) Different region analysis for genotyping Yersinia pestis isolates from China. PLoS One 3(5):e2166CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cui Y, Li Y, Gorge O, Platonov ME, Yan Y, Guo Z, Pourcel C, Dentovskaya SV, Balakhonov SV, Wang X et al (2008) Insight into microevolution of Yersinia pestis by clustered regularly interspaced short palindromic repeats. PLoS One 3(7):e2652CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Li Y, Cui Y, Hauck Y, Platonov ME, Dai E, Song Y, Guo Z, Pourcel C, Dentovskaya SV, Anisimov AP et al (2009) Genotyping and phylogenetic analysis of Yersinia pestis by MLVA: insights into the worldwide expansion of Central Asia plague foci. PLoS One 4(6):e6000CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Achtman M (2008) Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu Rev Microbiol 62:53–70CrossRefPubMedGoogle Scholar
  7. 7.
    Cui Y, Yu C, Yan Y, Li D, Li Y, Jombart T, Weinert LA, Wang Z, Guo Z, Xu L et al (2013) Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis. Proc Natl Acad Sci USA 110(2):577–582CrossRefPubMedGoogle Scholar
  8. 8.
    Morelli G, Song Y, Mazzoni CJ, Eppinger M, Roumagnoc P, Wagner DM, Feldkamp M, Kusecek B, Vogler AJ, Li Y et al (2010) Yersinia pestis genome sequencing identifies patterns of global phylogentic diversity. Nat Genet 42(12):1140–1143CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yan Y, Wang H, Li D, Yang X, Wang Z, Qi Z, Zhang Q, Cui B, Guo Z, Yu C et al (2014) Two-step source tracing strategy of Yersinia pestis and its historical epidemiology in a specific region. PLoS One 9(1):e85374CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K et al (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20(2):265–272CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410CrossRefGoogle Scholar
  12. 12.
    Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23(6):673–679CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5(2):R12CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zhou Z, McCann A, Weill FX, Blin C, Nair S, Wain J, Dougan G, Achtman M (2014) Transient Darwinian selection in salmonella enterica serovar Paratyphi a during 450 years of global spread of enteric fever. Proc Natl Acad Sci USA 111(33):12199–12204CrossRefPubMedGoogle Scholar
  15. 15.
    Kent WJ (2002) BLAT--the BLAST-like alignment tool. Genome Res 12(4):656–664CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, Fookes M, Falush D, Keane JA, Parkhill J (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31(22):3691–3693CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Chao Yang
    • 1
  • Yujun Cui
    • 1
  1. 1.Beijing Institute of Microbiology and EpidemiologyBeijingChina

Personalised recommendations