Advertisement

Adhesion Analysis of Yersinia pestis to Host Cells

  • Yafang Tan
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

The first step in most infections caused by pathogenic bacteria is adhesion to host cell epithelia. Cell adhesion is necessary to establish successful infection. Identification and bonding between bacterial adhesins and special adhesin receptors on the host cell surface initially occur, followed by a series of change in cellular processes.

Bacteria can directly bind to host cell receptors or use components such as extracellular matrix (ECM) proteins to mediate attachment to host cells. The ECM forms a network around cells and mainly comprises fibronectin, collagen, and laminin. The ECM can facilitate bridge-like adhesions between bacteria and host cells.

Fibronectin is a high molecular weight (~440 kDa) glycoprotein that is a key structural component in many tissues. Fibronectin can bind to membrane-spanning receptor proteins called integrins and other ECM components such as collagen, fibrin, and heparan sulfate proteoglycans. Moreover, fibronectin contains a binding site for several bacterial pathogens at its N-terminal end. Laminin is a major element of the basal lamina, a protein meshwork foundation for most cells and organs. Laminin acts as an important and biologically active part of the basal lamina to influence cell differentiation, migration, and adhesion.

Regardless of the attachment method, adhesion is the key process in infection. Thus, it is important to study the adhesion between bacteria and host cells to elucidate nosogenetic mechanisms behind bacterial pathogenesis. Moreover, new adhesins can be identified and characterized by this research.

Key words

Adhesion Yersinia pestis Adhesin Epithelia 

References

  1. 1.
    Du Z, Tan Y, Yang H, Qiu J, Qin L, Wang T, Liu H, Bi Y, Song Y, Guo Z et al (2009) Gene expression profiling of Yersinia pestis with deletion of lcrG, a known negative regulator for Yop secretion of type III secretion system. Int J Med Microbiol 299(5):355–366CrossRefPubMedGoogle Scholar
  2. 2.
    Perry RD, Fetherston JD (1997) Yersinia pestis-etiologic agent of plague. Clin Microbiol Rev 10:35–66PubMedPubMedCentralGoogle Scholar
  3. 3.
    Bleves S, Marenne MN, Detry G, Cornelis GR (2002) Up-regulation of the Yersinia enterocolitica yop regulon by deletion of the flagellum master operon flhDC. J Bacteriol 184(12):3214–3223CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cornelis GR (2000) Type III secretion: a bacterial device for close combat with cells of their eukaryotic host. Philos Trans R Soc Lond Ser B Biol Sci 355(1397):681–693CrossRefGoogle Scholar
  5. 5.
    Brubaker RR (2005) Influence of Na(+), dicarboxylic amino acids, and pH in modulating the low-calcium response of Yersinia pestis. Infect Immun 73(8):4743–4752CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Rosqvist R, Forsberg A, Rimpilainen M, Bergman T, Wolf-Watz H (1990) The cytotoxic protein YopE of Yersinia obstructs the primary host defence. Mol Microbiol 4(4):657–667CrossRefPubMedGoogle Scholar
  7. 7.
    Tsang TM, Felek S, Krukonis ES (2010) Ail binding to fibronectin facilitates Yersinia pestis binding to host cells and Yop delivery. Infect Immun 78(8):3358–3368CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cowan C, Jones HA, Kaya YH, Perry RD, Straley SC (2000) Invasion of epithelial cells by Yersinia pestis: evidence for a Y. pestis-specific invasion. Infect Immun 68(8):4523–4530CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Galvan EM, Chen H, Schifferli DM (2007) The Psa fimbriae of Yersinia pestis interact with phosphatidylcholine on alveolar epithelial cells and pulmonary surfactant. Infect Immun 75(3):1272–1279CrossRefPubMedGoogle Scholar
  10. 10.
    Pieper R, Huang ST, Robinson JM, Clark DJ, Alami H, Parmar PP, Perry RD, Fleischmann RD, Peterson SN (2009) Temperature and growth phase influence the outer-membrane proteome and the expression of a type VI secretion system in Yersinia pestis. Microbiology 155(Pt 2):498–512CrossRefPubMedGoogle Scholar
  11. 11.
    Lahteenmaki K, Kukkonen M, Korhonen TK (2001) The Pla surface protease/adhesin of Yersinia pestis mediates bacterial invasion into human endothelial cells. FEBS Lett 504(1–2):69–72CrossRefPubMedGoogle Scholar
  12. 12.
    Lahteenmaki K, Virkola R, Saren A, Emody L, Korhonen TK (1998) Expression of plasminogen activator pla of Yersinia pestis enhances bacterial attachment to the mammalian extracellular matrix. Infect Immun 66(12):5755–5762PubMedPubMedCentralGoogle Scholar
  13. 13.
    Payne D, Tatham D, Williamson ED, Titball RW (1998) The pH 6 antigen of Yersinia pestis binds to beta1-linked galactosyl residues in glycosphingolipids. Infect Immun 66(9):4545–4548PubMedPubMedCentralGoogle Scholar
  14. 14.
    Makoveichuk E, Cherepanov P, Lundberg S, Forsberg A, Olivecrona G (2003) pH6 antigen of Yersinia pestis interacts with plasma lipoproteins and cell membranes. J Lipid Res 44(2):320–330CrossRefPubMedGoogle Scholar
  15. 15.
    Zav’yalov VP, Abramov VM, Cherepanov PG, Spirina GV, Chernovskaya TV, Vasiliev AM, Zav’yalova GA (1996) pH 6 antigen (PsaA protein) of Yersinia pestis, a novel bacterial Fc-receptor. FEMS Immunol Med Microbiol 14(1):53–57CrossRefPubMedGoogle Scholar
  16. 16.
    Straley SC (1993) Adhesins in Yersinia pestis. Trends Microbiol 1(8):285–286CrossRefPubMedGoogle Scholar
  17. 17.
    Lindler LE, Tall BD (1993) Yersinia pestis pH 6 antigen forms fimbriae and is induced by intracellular association with macrophages. Mol Microbiol 8(2):311–324CrossRefPubMedGoogle Scholar
  18. 18.
    Yang Y, Merriam JJ, Mueller JP, Isberg RR (1996) The psa locus is responsible for thermoinducible binding of Yersinia pseudotuberculosis to cultured cells. Infect Immun 64(7):2483–2489PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yafang Tan
    • 1
  1. 1.Beijing Institute of Microbiology and EpidemiologyBeijingChina

Personalised recommendations