Antibody Glycans Characterization

  • Marie-Claire Janin-Bussat
  • Elsa Wagner-Rousset
  • Christine Klinguer-Hamour
  • Nathalie Corvaia
  • Alain van Dorsselaer
  • Alain BeckEmail author
Part of the Springer Protocols Handbooks book series (SPH)

Glycosylation is one of the main IgG post-translational modifications and has essential roles in antibody effectors functions, immunogenicity and plasmatic clearance. In this chapter we discuss and provide detailed protocols for IgG homogeneity and determination of level of glycosylation by Capillary Electrophoresis-Sodium Dodecyl Sulfate (CE-SDS), for orthogonal glyco-profiling of IgG-released glycans by Capillary Electrophoresis with a Laser-Induced Fluorescent Detector (CE-LIF) and by Normal-Phase High Performance Liquid Chromatography (NP-HPLC), as well as glycans fine structure assessment by Matrix-Assisted Laser Desorption/ Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF-MS) and by nano-Liquid Chromatography tandem mass spectrometry fragmentation (nano-LC-MS/MS).


Sialic Acid Chinese Hamster Ovary Reaction Vial Neuraminic Acid Sodium Cyanoborohydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arnold JN, Royle L, Dwek RA, Rudd PM, Sim RB (2005) Human immunoglobulin glycosylation and the lectin pathway of complement activation. Adv Exp Med Biol 564:27–43PubMedCrossRefGoogle Scholar
  2. Bakker H, Rouwendal GJA, Karnoup AS, Florack DEA, Stoopen GM, Helsper JPFG, Van Ree R, Van Die I, Bosch D (2006) An antibody produced in tobacco expressing a hybrid β-1, 4-galactosyltransferase is essentially devoid of plant carbohydrate epitopes. Proc Natl Acad Sci USA 103:7577–7582PubMedCrossRefGoogle Scholar
  3. Beck A, Bussat MC, Zorn N, Robillard V, Klinguer-Hamour C, Chenu S, Goetsch L, Corvaia N, Van Dorsselaer A, Haeuw JF (2005) Characterization by liquid chromatography combined with mass spectrometry of monoclonal anti-IGF-1 receptor antibodies produced in CHO and NS0 cells. J Chromatogr B Analyt Technol Biomed Life Sci 819:203–218PubMedCrossRefGoogle Scholar
  4. Beck A, Klinguer-Hamour C, Bussat MC, Champion T, Haeuw JF, Goetsch L, Wurch T, Sugawara M, Milon A, Van Dorsselaer A, Nguyen T, Corvaia N (2007) Peptides as tools and drugs for immunotherapies. J Pept Sci 13:588–602PubMedCrossRefGoogle Scholar
  5. Beck A, Wagner-Rousset E, Bussat MC, Lokteff M, Klinguer-Hamour C, Haeuw JF, Goetsch L, Wurch T, Van Dorsselaer A, Corvaia N (2008a) Trends in Glycosylation, Glycoanalysis and Glycoengineering of Therapeutic Antibodies and Fc-Fusion Proteins. Curr Pharm Biotechnol 9:482–501PubMedCrossRefGoogle Scholar
  6. Beck A, Wurch T, Corvaïa N (2008b) Editorial: therapeutic antibodies and derivatives: from the bench to the clinic. Curr Pharm Biotechnol 9:421–422PubMedCrossRefGoogle Scholar
  7. Beck A, Wagner-Rousset E, Goetsch L, Corvaïa N (2008c) Therapeutic antibodies: structure assessment by mass spectrometry from screening to clinical batches. Screen Trends Drug Discov 9:18–20Google Scholar
  8. Birch JR, Racher AJ (2006) Antibody production. Adv Drug Deliv Rev 58:671–685PubMedCrossRefGoogle Scholar
  9. Butler M (2005) Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68:283–291PubMedCrossRefGoogle Scholar
  10. Chartrain M, Chu L (2008) Development and production of commercial therapeutic monoclonal antibodies in mammalian cell expression system: an overview of the current upstream technologies. Curr Pharm Biotechnol 9:447–467PubMedCrossRefGoogle Scholar
  11. Chelius D, Huff Wimer ME, Bondarenko PV (2006) Reversed-phase liquid chromatography in-line with negative ionization electrospray mass spectrometry for the characterization of the disulfide-linkages of an immunoglobulin gamma antibody. J Am Soc Mass Spectrom 17:1590–1598PubMedCrossRefGoogle Scholar
  12. Chen X, Tang K, Lee M, Flynn GC (2008) Microchip assays for screening monoclonal antibody product quality. Electrophoresis 29:4993–5002PubMedCrossRefGoogle Scholar
  13. Echelard Y, Ziomek CA, Meade HM (2006) Production of recombinant therapeutic proteins in the milk of transgenic animals. BioPharm Int 19:36–46Google Scholar
  14. Ferrara C, Brunker P, Suter T, Moser S, Puntener U, Umana P (2006) Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II. Biotechnol Bioeng 93:851–861PubMedCrossRefGoogle Scholar
  15. Forrer K, Hammer S, Helk B (2004) Chip-based gel electrophoresis method for the quantification of half-antibody species in IgG4 and their by- and degradation products. Anal Biochem 334:81–88PubMedCrossRefGoogle Scholar
  16. Gadgil HS, Pipes GD, Dillon TM, Treuheit MJ, Bondarenko PV (2006) Improving mass accuracy of high performance liquid chromatography/electrospray ionization time-of-flight mass spectrometry of intact antibodies. J Am Soc Mass Spectrom 17:867–872PubMedCrossRefGoogle Scholar
  17. Gennaro LA, Salas-Solano O. (2008) On-Line CE-LIF-MS Technology for the Direct Characterization of N-Linked Glycans from Therapeutic Antibodies. Analytical Chemistry (in press)Google Scholar
  18. Gomord V, Chamberlain P, Jefferis R, Faye L (2005) Biopharmaceutical production in plants: problems, solutions and opportunities. Trends Biotechnol 23:559–565PubMedCrossRefGoogle Scholar
  19. Guile GR, Rudd PM, Wing DR, Prime SB, Dwek RA (1996) A rapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles. Anal Biochem 240:210–226PubMedCrossRefGoogle Scholar
  20. Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim TA, Li H, Choi BK, Hopkins D, Wischnewski H, Roser J, Mitchell T, Strawbridge RR, Hoopes J, Wildt S, Gerngross TU (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313:1441–1443PubMedCrossRefGoogle Scholar
  21. Hinton PR, Xiong JM, Johlfs MG, Tang MT, Keller S, Tsurushita N (2006) An engineered human IgG1 antibody with longer serum half-life. J Immunol 176:346–356PubMedGoogle Scholar
  22. Hodoniczky J, Zheng YZ, James DC (2005) Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol Prog 21:1644–1652PubMedCrossRefGoogle Scholar
  23. Holland M, Yagi H, Takahashi N, Kato K, Savage COS, Goodall DM, Jefferis R (2006) Differential glycosylation of polyclonal IgG, IgG-Fc and IgG-Fab isolated from the sera of patients with ANCA-associated systemic vasculitis. Biochim Biophys Acta Gen Subj 1760:669–677CrossRefGoogle Scholar
  24. Huang LH, Biolsi S, Bales KR, Kuchibhotla U (2006) Impact of variable domain glycosylation on antibody clearance: an LC/MS characterization. Anal Biochem 349:197–207PubMedCrossRefGoogle Scholar
  25. Jefferis R (2005) Glycosylation of recombinant antibody therapeutics. Biotechnol Prog 21:11–16PubMedCrossRefGoogle Scholar
  26. Jefferis R (2006) Criteria for selection of IgG isotype and glycoform of antibody therapeutics. BioProcess Int 4:40–43Google Scholar
  27. Jones D, Kroos N, Anema R, van Montfort B, Vooys A, van Der KS, van Der HE, Smits S, Schouten J, Brouwer K, Lagerwerf F, van Berkel P, Opstelten DJ, Logtenberg T, Bout A (2003) High-level expression of recombinant IgG in the human cell line per.c6. Biotechnol Prog 19:163–168PubMedCrossRefGoogle Scholar
  28. Kamoda S, Kakehi K (2006) Capillary electrophoresis for the analysis of glycoprotein pharmaceuticals. Electrophoresis 27:2495–2504PubMedCrossRefGoogle Scholar
  29. Kamoda S, Kakehi K (2008) Evaluation of glycosylation for quality assurance of antibody pharmaceuticals by capillary electrophoresis. Electrophoresis 29:3595–3604PubMedCrossRefGoogle Scholar
  30. Kamoda S, Ishikawa R, Kakehi K (2006) Capillary electrophoresis with laser-induced fluorescence detection for detailed studies on N-linked oligosaccharide profile of therapeutic recombinant monoclonal antibodies. J Chromatogr A 1133:332–339PubMedCrossRefGoogle Scholar
  31. Kanda Y, Yamane-Ohnuki N, Sakai N, Yamano K, Nakano R, Inoue M, Misaka H, Iida S, Wakitani M, Konno Y, Yano K, Shitara K, Hosoi S, Satoh M (2006) Comparison of cell lines for stable production of fucose-negative antibodies with enhanced ADCC. Biotechnol Bioeng 94:680–688PubMedCrossRefGoogle Scholar
  32. Kost TA, Condreay JP, Jarvis DL (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23:567–575PubMedCrossRefGoogle Scholar
  33. Li H, Sethuraman N, Stadheim TA, Zha D, Prinz B, Ballew N, Bobrowicz P, Choi BK, Cook WJ, Cukan M, Houston-Cummings NR, Davidson R, Gong B, Hamilton SR, Hoopes JP, Jiang Y, Kim N, Mansfield R, Nett JH, Rios S, Strawbridge R, Wildt S, Gerngross TU (2006) Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol 24:210–215PubMedCrossRefGoogle Scholar
  34. Lobo ED, Hansen RJ, Balthasar JP (2004) Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 93:2645–2668PubMedCrossRefGoogle Scholar
  35. Prater BD, Connelly HM, Qin Q, Cockrill SL (2009) High-throughput immunoglobulin G N-glycan characterization using rapid resolution reverse-phase chromatography tandem mass spectrometry. Anal Biochem 385:69–79PubMedCrossRefGoogle Scholar
  36. Raju TS, Scallon BJ (2006) Glycosylation in the Fc domain of IgG increases resistance to proteolytic cleavage by papain. Biochem Biophys Res Commun 341:797–803PubMedCrossRefGoogle Scholar
  37. Rehder DS, Dillon TM, Pipes GD, Bondarenko PV (2006) Reversed-phase liquid chromatography/mass spectrometry analysis of reduced monoclonal antibodies in pharmaceutics. J Chromatogr A 1102:164–175PubMedCrossRefGoogle Scholar
  38. Rustandi RR, Washabaugh MW, Wang Y (2008) Applications of CE SDS gel in development of biopharmaceutical antibody-based products. Electrophoresis 29:3612–3620PubMedCrossRefGoogle Scholar
  39. Sheeley DM, Merrill BM, Taylor LC (1997) Characterization of monoclonal antibody glycosylation: comparison of expression systems and identification of terminal alpha-linked galactose. Anal Biochem 247:102–110PubMedCrossRefGoogle Scholar
  40. Suzuki N, Lee YC (2004) Site-specific N-glycosylation of chicken serum IgG. Glycobiology 14:275–292PubMedCrossRefGoogle Scholar
  41. Takegawa Y, Deguchi K, Keira T, Ito H, Nakagawa H, Nishimura S (2006) Separation of isomeric 2-aminopyridine derivatized N-glycans and N-glycopeptides of human serum immunoglobulin G by using a zwitterionic type of hydrophilic-interaction chromatography. J Chromatogr A 1113:177–181PubMedCrossRefGoogle Scholar
  42. Wagner-Rousset E, Bednarczyk A, Bussat MC, Colas O, Corvaia N, Schaeffer C, Van Dorsselaer A, Beck A (2008) The way forward, enhanced characterization of therapeutic antibody glycosylation: comparison of three level mass spectrometry-based strategies. J Chromatogr B Analyt Technol Biomed Life Sci 872:23–37PubMedCrossRefGoogle Scholar
  43. Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24:1241–1252PubMedCrossRefGoogle Scholar
  44. Wildt S, Gerngross TU (2005) The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol 3:119–128PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marie-Claire Janin-Bussat
    • 1
  • Elsa Wagner-Rousset
    • 1
  • Christine Klinguer-Hamour
    • 1
  • Nathalie Corvaia
    • 1
  • Alain van Dorsselaer
    • 2
  • Alain Beck
    • 1
    Email author
  1. 1.Centre d’Immunologie Pierre Fabre (CIPF)Saint-Julien-en-GenevoisFrance
  2. 2.Laboratoire de Spectrométrie de Masse Biologique (LSMBO)Université de StrasbourgStrasbourgFrance

Personalised recommendations