Expression of IgA Molecules in Mammalian Cells

  • Thomas Beyer
  • Stefan Lohse
  • Michael Dechant
  • Thomas ValeriusEmail author
Part of the Springer Protocols Handbooks book series (SPH)

Although natural IgA antibodies constitute an important immune defense mechanism at serosal surfaces, their immunotherapeutic potential has not been thoroughly explored. Among the limitations hampering the development of therapeutic IgA antibodies is the lack of well established production and purification technologies. Here, we describe protocols to produce and purify recombinant chimeric IgA antibodies irrespective of their antigen specificity. Resulting antibodies were monomeric, fully functional and stable. The obtained production rates and purities will allow further testing e.g. in animal models. Intentionally, we aimed to employ methods similar to those used for IgG production and purification to allow further optimization and up-scaling according to established methods.


Glutamine Synthetase Chinese Hamster Ovary Size Exclusion Chromatography Roller Bottle Flat Bottom Tissue Culture Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Areschoug T, Stalhammar-Carlemalm M, Karlsson I, Lindahl G (2002) Streptococcal beta protein has separate binding sites for human factor H and IgA-Fc. J Biol Chem 277(15):12642–12648PubMedCrossRefGoogle Scholar
  2. Belew M, Juntti N, Larsson A, Porath J (1987) A one-step purification method for monoclonal antibodies based on salt-promoted adsorption chromatography on a 'thiophilic' adsorbent. J Immunol Methods 102(2):173–182PubMedCrossRefGoogle Scholar
  3. Birch JR, Racher AJ (2006) Antibody production. Adv Drug Deliv Rev 58(5–6):671–685PubMedCrossRefGoogle Scholar
  4. Boel E, Verlaan S, Poppelier MJ, Westerdaal NA, Van Strijp JA, Logtenberg T (2000) Functional human monoclonal antibodies of all isotypes constructed from phage display library-derived single-chain Fv antibody fragments. J Immunol Methods 239(1–2):153–166PubMedCrossRefGoogle Scholar
  5. Bonner A, Almogren A, Furtado PB, Kerr MA, Perkins SJ (2008a) The non-planar secretory IgA2 and near-planar secretory IgA1 solution structures rationalise their different mucosal immune responses. J Biol Chem 284(8):5077–5087PubMedCrossRefGoogle Scholar
  6. Bonner A, Furtado PB, Almogren A, Kerr MA, Perkins SJ (2008b) Implications of the near-planar solution structure of human myeloma dimeric IgA1 for mucosal immunity and IgA nephropathy. J Immunol 180(2):1008–1018PubMedGoogle Scholar
  7. Brandtzaeg P (2007) Induction of secretory immunity and memory at mucosal surfaces. Vaccine 25(30):5467–5484PubMedCrossRefGoogle Scholar
  8. Browne SM, Al-Rubeai M (2007) Selection methods for high-producing mammalian cell lines. Trends Biotechnol 25(9):425–432PubMedCrossRefGoogle Scholar
  9. Chintalacharuvu KR, Gurbaxani B, Morrison SL (2007) Incomplete assembly of IgA2m(2) in Chinese hamster ovary cells. Mol Immunol 44(13):3445–3452PubMedCrossRefGoogle Scholar
  10. Chintalacharuvu KR, Morrison SL (1996) Residues critical for H-L disulfide bond formation in human IgA1 and IgA2. J Immunol 157(8):3443–3449PubMedGoogle Scholar
  11. Chintalacharuvu KR, Morrison SL (1999) Production and characterization of recombinant IgA. Immunotechnology 4(3–4):165–174PubMedCrossRefGoogle Scholar
  12. Chu L, Robinson DK (2001) Industrial choices for protein production by large-scale cell culture. Curr Opin Biotechnol 12(2):180–187PubMedCrossRefGoogle Scholar
  13. Cockett MI, Bebbington CR, Yarranton GT (1990) High level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification. Biotechnol (NY) 8(7):662–667CrossRefGoogle Scholar
  14. Corthesy B (2002) Recombinant immunoglobulin A: powerful tools for fundamental and applied research. Trends Biotechnol 20(2):65–71PubMedCrossRefGoogle Scholar
  15. de la Cruz Edmonds MC, Tellers M, Chan C, Salmon P, Robinson DK, Markusen J (2006) Development of transfection and high-producer screening protocols for the CHOK1SV cell system. Mol Biotechnol 34(2):179–190PubMedCrossRefGoogle Scholar
  16. Dechant M, Beyer T, Schneider-Merck T, Weisner W, Peipp M, van de Winkel JG, Valerius T (2007) Effector mechanisms of recombinant IgA antibodies against epidermal growth factor receptor. J Immunol 179(5):2936–2943PubMedGoogle Scholar
  17. Gomes MM, Wall SB, Takahashi K, Novak J, Renfrow MB, Herr AB (2008) Analysis of IgA1 N-glycosylation and its contribution to FcalphaRI binding. Biochemistry 47(43):11285–11299PubMedCrossRefGoogle Scholar
  18. Gregory RL, Rundegren J, Arnold RR (1987) Separation of human IgA1 and IgA2 using jacalin-agarose chromatography. J Immunol Methods 99(1):101–106PubMedCrossRefGoogle Scholar
  19. Herr AB, Ballister ER, Bjorkman PJ (2003) Insights into IgA-mediated immune responses from the crystal structures of human FcalphaRI and its complex with IgA1-Fc. Nature 423(6940):614–620PubMedCrossRefGoogle Scholar
  20. Kerr MA (1990) The structure and function of human IgA. Biochem J 271(2):285–296PubMedGoogle Scholar
  21. Leibl H, Tomasits R, Mannhalter JW (1995) Isolation of human serum IgA using thiophilic adsorption chromatography. Protein Expr Purif 6(4):408–410PubMedCrossRefGoogle Scholar
  22. Lindahl G, Akerstrom B, Vaerman JP, Stenberg L (1990) Characterization of an IgA receptor from group B streptococci: specificity for serum IgA. Eur J Immunol 20(10):2241–2247PubMedCrossRefGoogle Scholar
  23. Mattu TS, Pleass RJ, Willis AC, Kilian M, Wormald MR, Lellouch AC, Rudd PM, Woof JM, Dwek RA (1998) The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fc alpha receptor interactions. J Biol Chem 273(4):2260–2272PubMedCrossRefGoogle Scholar
  24. Morton HC, Atkin JD, Owens RJ, Woof JM (1993) Purification and characterization of chimeric human IgA1 and IgA2 expressed in COS and Chinese hamster ovary cells. J Immunol 151(9):4743–4752PubMedGoogle Scholar
  25. Nilson BH, Solomon A, Bjorck L, Akerstrom B (1992) Protein L from Peptostreptococcus magnus binds to the kappa light chain variable domain. J Biol Chem 267(4):2234–2239PubMedGoogle Scholar
  26. Novak J, Julian BA, Tomana M, Mestecky J (2008) IgA glycosylation and IgA immune complexes in the pathogenesis of IgA nephropathy. Semin Nephrol 28(1):78–87PubMedCrossRefGoogle Scholar
  27. Perosa F, Carbone R, Ferrone S, Dammacco F (1990) Purification of human immunoglobulins by sequential precipitation with caprylic acid and ammonium sulphate. J Immunol Methods 128(1):9–16PubMedCrossRefGoogle Scholar
  28. Pu H, Cashion LM, Kretschmer PJ, Liu Z (1998) Rapid establishment of high-producing cell lines using dicistronic vectors with glutamine synthetase as the selection marker. Mol Biotechnol 10(1):17–25PubMedCrossRefGoogle Scholar
  29. Ronnmark J, Gronlund H, Uhlen M, Nygren PA (2002) Human immunoglobulin A (IgA)-specific ligands from combinatorial engineering of protein A. Eur J Biochem 269(11):2647–2655PubMedCrossRefGoogle Scholar
  30. Sandin C, Linse S, Areschoug T, Woof JM, Reinholdt J, Lindahl G (2002) Isolation and detection of human IgA using a streptococcal IgA-binding peptide. J Immunol 169(3):1357–1364PubMedGoogle Scholar
  31. Stenberg L, O’Toole PW, Mestecky J, Lindahl G (1994) Molecular characterization of protein Sir, a streptococcal cell surface protein that binds both immunoglobulin A and immunoglobulin G. J Biol Chem 269(18):13458–13464PubMedGoogle Scholar
  32. Thern A, Stenberg L, Dahlback B, Lindahl G (1995) Ig-binding surface proteins of Streptococcus pyogenes also bind human C4b-binding protein (C4BP), a regulatory component of the complement system. J Immunol 154(1):375–386PubMedGoogle Scholar
  33. van Egmond M (2008) Neutrophils in antibody-based immunotherapy of cancer. Expert Opin Biol Ther 8(1):83–94PubMedCrossRefGoogle Scholar
  34. Wines BD, Hogarth PM (2006) IgA receptors in health and disease. Tissue Antigens 68(2):103–114PubMedCrossRefGoogle Scholar
  35. Woof JM, Kerr MA (2006) The function of immunoglobulin A in immunity. J Pathol 208(2):270–282PubMedCrossRefGoogle Scholar
  36. Woof JM, Mestecky J (2005) Mucosal immunoglobulins. Immunol Rev 206:64–82PubMedCrossRefGoogle Scholar
  37. Wright A, Morrison SL (1997) Effect of glycosylation on antibody function: implications for genetic engineering. Trends Biotechnol 15(1):26–32PubMedCrossRefGoogle Scholar
  38. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11):1393–1398PubMedCrossRefGoogle Scholar
  39. Yoo EM, Morrison SL (2005) IgA: an immune glycoprotein. Clin Immunol 116(1):3–10PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Thomas Beyer
    • 1
  • Stefan Lohse
    • 2
  • Michael Dechant
    • 1
  • Thomas Valerius
    • 3
    Email author
  1. 1.Division of Nephrology and HypertensionChristian-Albrechts-UniversityKielGermany
  2. 2.Division of Stem Cell Transplantation and ImmunotherapyChristian-Albrechts-UniversityKielGermany
  3. 3.Division of Stem Cell Transplantation and ImmunotherapyChristian-Albrechts-UniversityKielGermany

Personalised recommendations