Advertisement

Yeast Display and Selections

  • Kelly Davis Orcutt
  • K. Dane WittrupEmail author
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

In yeast surface display, yeast cells are exploited to express a protein of interest on their surface, thereby linking it to the encoding DNA within the cell. This display system has become a widely used platform for protein engineering in the past decade, as it confers eukaryotic expression important for the correct assembly of many proteins. In addition, flow cytometry allows for quantitative characterization of binding kinetics and rapid quantitative library screening. In this chapter, we present detailed protocols for yeast surface display and the isolation of naïve binders from a nonimmune scFv library using a combination of magnetic bead selections and fluorescence activated cell sorting. In addition, we describe kinetic binding and thermal stability characterization of proteins expressed via yeast surface display.

Keywords

Fluorescence Activate Cell Sorting Antigen Binding Yeast Nitrogen Base Affinity Maturation Electroporation Cuvette 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ackerman ME, Levary D, Tobon G, Hackel BJ, Orcutt KD, Wittrup KD (2009) Highly avid magnetic bead capture; an efficient selection method for de novo protein engineering utilizing yeast surface display. Biotechnol Prog 25:774–783PubMedCrossRefGoogle Scholar
  2. Antipov E, Cho AE, Wittrup KD, Klibanov AM (2008) Highly L and D enantioselective variants of horseradish peroxidase discovered by an ultrahigh-throughput selection method. Proc Natl Acad Sci USA 105:17694–17699PubMedCrossRefGoogle Scholar
  3. Boder ET, Midelfort KS, Wittrup KD (2000) Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci USA 97:10701–10705PubMedCrossRefGoogle Scholar
  4. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557PubMedCrossRefGoogle Scholar
  5. Boder ET, Wittrup KD (1998) Optimal screening of surface-displayed polypeptide libraries. Biotechnol Prog 14:55–62PubMedCrossRefGoogle Scholar
  6. Boder ET, Wittrup KD (2000) Yeast surface display for directed evolution of protein expression, affinity, and stability. Methods Enzymol 328:430–444PubMedCrossRefGoogle Scholar
  7. Bowley DR, Labrijn AF, Zwick MB, Burton DR (2007) Antigen selection from an HIV-1 immune antibody library displayed on yeast yields many novel antibodies compared to selection from the same library displayed on phage. Protein Eng Des Sel 20:81–90PubMedCrossRefGoogle Scholar
  8. Brezinsky SC, Chiang GG, Szilvasi A, Mohan S, Shapiro RI, MacLean A, Sisk W, Thill G (2003) A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity. J Immunol Methods 277:141–155PubMedCrossRefGoogle Scholar
  9. Chao G, Lau WL, Hackel BJ, Sazinsky SL, Lippow SM, Wittrup KD (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1:755–768PubMedCrossRefGoogle Scholar
  10. Colby DW, Kellogg BA, Graff CP, Yeung YA, Swers JS, Wittrup KD (2004) Engineering antibody affinity by yeast surface display. Methods Enzymol 388:348–358PubMedCrossRefGoogle Scholar
  11. Colemann JR, Baird CL (2006) Indicators of candida contamination in the scFv yeast display library and method for its control. Pacific Northwest National Laboratory. http://www.sysbio.org/dataresources/candidascFvLibrary060207.pdf. Cited 14 Jan 2009
  12. Fandl J, Stahl N, Chen G, Yancopoulos G (2008) Isolating Cells Expressing Secreted Proteins. US Patent 7(435):553Google Scholar
  13. Feldhaus M, Siegel R (2004) Flow cytometric screening of yeast surface display libraries. Methods Mol Biol 263:311–332PubMedGoogle Scholar
  14. Feldhaus MJ, Siegel RW, Opresko LK, Coleman JR, Feldhaus JM, Yeung YA, Cochran JR, Heinzelman P, Colby D, Swers J, Graff C, Wiley HS, Wittrup KD (2003) Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 21:163–170PubMedCrossRefGoogle Scholar
  15. Frykman S, Srienc F (1998) Quantitating secretion rates of individual cells: design of secretion assays. Biotechnol Bioeng 59:214–226PubMedCrossRefGoogle Scholar
  16. Gai SA, Wittrup KD (2007) Yeast surface display for protein engineering and characterization. Curr Opin Struct Biol 17:467–473PubMedCrossRefGoogle Scholar
  17. Graff CP, Chester K, Begent R, Wittrup KD (2004) Directed evolution of an anti-carcinoembryonic antigen scFv with a 4-day monovalent dissociation half-time at 37 degrees C. Protein Eng Des Sel 17:293–304PubMedCrossRefGoogle Scholar
  18. Hackel BJ, Kapila A, Wittrup KD (2008) Picomolar affinity fibronectin domains engineered utilizing loop length diversity, recursive mutagenesis, and loop shuffling. J Mol Biol 381:1238–1252PubMedCrossRefGoogle Scholar
  19. Hamilton SR, Bobrowicz P, Bobrowicz B, Davidson RC, Li H, Mitchell T, Nett JH, Rausch S, Stadheim TA, Wischnewski H, Wildt S, Gerngross TU (2003) Production of complex human glycoproteins in yeast. Science 301:1244–1246PubMedCrossRefGoogle Scholar
  20. Kieke MC, Cho BK, Boder ET, Kranz DM, Wittrup KD (1997) Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein Eng 10:1303–1310PubMedCrossRefGoogle Scholar
  21. Lipovsek D, Lippow SM, Hackel BJ, Gregson MW, Cheng P, Kapila A, Wittrup KD (2007) Evolution of an interloop disulfide bond in high-affinity antibody mimics based on fibronectin type III domain and selected by yeast surface display: molecular convergence with single-domain camelid and shark antibodies. J Mol Biol 368:1024–1041PubMedCrossRefGoogle Scholar
  22. Manz R, Assenmacher M, Pfluger E, Miltenyi S, Radbruch A (1995) Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc Natl Acad Sci USA 92:1921–1925PubMedCrossRefGoogle Scholar
  23. Matsumoto T, Fukuda H, Ueda M, Tanaka A, Kondo A (2002) Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain. Appl Environ Microbiol 68:4517–4522PubMedCrossRefGoogle Scholar
  24. Pepper LR, Cho YK, Boder ET, Shusta EV (2008) A decade of yeast surface display technology: where are we now? Comb Chem High Throughput Screen 11:127–134PubMedCrossRefGoogle Scholar
  25. Raju TS (2008) Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr Opin Immunol 20:471–478PubMedCrossRefGoogle Scholar
  26. Rakestraw JA, Baskaran AR, Wittrup KD (2006) A flow cytometric assay for screening improved heterologous protein secretion in yeast. Biotechnol Prog 22:1200–1208PubMedCrossRefGoogle Scholar
  27. Razai A, Garcia-Rodriguez C, Lou J, Geren IN, Forsyth CM, Robles Y, Tsai R, Smith TJ, Smith LA, Siegel RW, Feldhaus M, Marks JD (2005) Molecular evolution of antibody affinity for sensitive detection of botulinum neurotoxin type A. J Mol Biol 351:158–169PubMedCrossRefGoogle Scholar
  28. Sazinsky SL, Ott RG, Silver NW, Tidor B, Ravetch JV, Wittrup KD (2008) Aglycosylated immunoglobulin G1 variants productively engage activating Fc receptors. Proc Natl Acad Sci USA 105:20167–20172PubMedCrossRefGoogle Scholar
  29. Shusta EV, Kieke MC, Parke E, Kranz DM, Wittrup KD (1999) Yeast polypeptide fusion surface display levels predict thermal stability and soluble secretion efficiency. J Mol Biol 292:949–956PubMedCrossRefGoogle Scholar
  30. Sinclair AM, Elliott S (2005) Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 94:1626–1635PubMedCrossRefGoogle Scholar
  31. Sola RJ, Rodriguez-Martinez JA, Griebenow K (2007) Modulation of protein biophysical properties by chemical glycosylation: biochemical insights and biomedical implications. Cell Mol Life Sci 64:2133–2152PubMedCrossRefGoogle Scholar
  32. Swers JS, Kellogg BA, Wittrup KD (2004) Shuffled antibody libraries created by in vivo homologous recombination and yeast surface display. Nucleic Acids Res 32:e36PubMedCrossRefGoogle Scholar
  33. Szent-Gyorgyi C, Schmidt BF, Creeger Y, Fisher GW, Zakel KL, Adler S, Fitzpatrick JA, Woolford CA, Yan Q, Vasilev KV, Berget PB, Bruchez MP, Jarvik JW, Waggoner A (2008) Fluorogen-activating single-chain antibodies for imaging cell surface proteins. Nat Biotechnol 26:235–240PubMedCrossRefGoogle Scholar
  34. van den Beucken T, Pieters H, Steukers M, van der Vaart M, Ladner RC, Hoogenboom HR, Hufton SE (2003) Affinity maturation of Fab antibody fragments by fluorescent-activated cell sorting of yeast-displayed libraries. FEBS Lett 546:288–294PubMedCrossRefGoogle Scholar
  35. Van der Vaart JM, te biesebeke R, Chapman JW, Toschka HY, Klis FM, Verrips CT (1997) Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins. Appl Environ Microbiol 63:615–620PubMedGoogle Scholar
  36. VanAntwerp JJ, Wittrup KD (2000) Fine affinity discrimination by yeast surface display and flow cytometry. Biotechnol Prog 16:31–37PubMedCrossRefGoogle Scholar
  37. Wang XX, Cho YK, Shusta EV (2007) Mining a yeast library for brain endothelial cell-binding antibodies. Nat Methods 4:143–145PubMedCrossRefGoogle Scholar
  38. Weaver-Feldhaus JM, Lou J, Coleman JR, Siegel RW, Marks JD, Feldhaus MJ (2004) Yeast mating for combinatorial Fab library generation and surface display. FEBS Lett 564:24–34PubMedCrossRefGoogle Scholar
  39. Wentz AE, Shusta EV (2007) A novel high-throughput screen reveals yeast genes that increase secretion of heterologous proteins. Appl Environ Microbiol 73:1189–1198PubMedCrossRefGoogle Scholar
  40. Wong TS, Roccatano D, Zacharias M, Schwaneberg U (2006) A statistical analysis of random mutagenesis methods used for directed protein evolution. J Mol Biol 355:858–871PubMedCrossRefGoogle Scholar
  41. Yeung YA, Finney AH, Koyrakh IA, Lebowitz MS, Ghanbari HA, Wands JR, Wittrup KD (2007) Isolation and characterization of human antibodies targeting human aspartyl (asparaginyl) beta-hydroxylase. Hum Antibodies 16:163–176PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations