Subtelomeric and/or Subcentromeric Probe Sets

  • Anja WeiseEmail author
  • Kristin Mrasek
  • Madeleine Gross
  • Vivien Klaschka
  • Thomas Liehr
Part of the Springer Protocols Handbooks book series (SPH)

Aside from microscopically visible chromosomal rearrangements, numerous cryptic chromosomal alterations have been reported since the introduction of techniques like FISH, array-CGH or MLPA. This is especially true of dynamic regions in the subtelomere and subcentromere of any chromosome. To address these regions, locus-specific FISH probes are employed as single, chromosome-specific or genome-wide probe sets. Here we present the chromosome-specific subtelomere–subcentromere multicolor FISH (subCTM) and genome-wide subcentromere multicolor FISH (subcenM) probe sets, which are useful as screening tools in specific patient groups like the infertile and mentally retarded, as well as in tumor cytogenetics and for evolutionary studies when applied as ZOO-FISH.


Segmental Duplication Pericentromeric Region Acrocentric Chromosome Subtelomeric Region Subtelomeric Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Supported in parts by the Dr. Robert Pfleger-Stiftung, DFG (436 RUS 17/135/03, 17/109/04 and 17/22/06, 436 WER 17/1/04 and 17/5/05, WE 3617/2-1), DAAD/ British Council support (313-ARC-XX-lk, A0703172/Ref.325), Boehringer Ingelheim Fonds, Stefan-Morsch-Stiftung, Erwin-Riesch Stiftung, and Evangelische Studienwerk e.V. Villigst.


  1. Balikova I, Menten B, de Ravel T, Le Caignec C, Thienpont B, Urbina M, Doco-Fenzy M, de Rademaeker M, Mortier G, Kooy F, van den Ende J, Devriendt K, Fryns JP, Speleman F, Vermeesch JR (2007) Subtelomeric imbalances in phenotypically normal individuals. Hum Mutat 28:958–967CrossRefPubMedGoogle Scholar
  2. Brown J, Saracoglu K, Uhrig S, Speicher MR, Eils R, Kearney L (2001) Subtelomeric chromosome rearrangements are detected using an innovative 12-color FISH assay (M-TEL). Nat Med 7:497–501CrossRefPubMedGoogle Scholar
  3. Dawson AJ, Putnam S, Schultz J, Riordan D, Prasad C, Greenberg CR, Chodirker BN, Mhanni AA, Chudley AE (2002) Cryptic chromosome rearrangements detected by subtelomere assay in patients with mental retardation and dysmorphic features. Clin Genet 62:488–494CrossRefPubMedGoogle Scholar
  4. Gardner RJM, Sutherland GR (2004) Chromosome abnormalities and genetic counseling, 3rd edn.Oxford University Press, OxfordGoogle Scholar
  5. Granzow M, Popp S, Keller M, Holtgreve-Grez H, Brough M, Schoell B, Rauterberg-Ruland I, Hager HD, Tariverdian G, Jauch A (2000) Multiplex FISH telomere integrity assay identifies an unbalanced cryptic translocation der(5)t(3;5)(q27;p15.3) in a family with three mentally retarded individuals. Hum Genet 107:51–57CrossRefPubMedGoogle Scholar
  6. Gross M, Starke H, Trifonov V, Claussen U, Liehr T, Weise A (2006) A molecular cytogenetic study of chromosome evolution in chimpanzee. Cytogenet Genome Res 112:67–75CrossRefPubMedGoogle Scholar
  7. Klaschka V, Mrasek K, Liehr T, Mkrtchyan H, Weise A (2008) A new probe set for the characterization of centromere-near rearrangements. MedGen (in press)Google Scholar
  8. Knight SJ, Flint J (2000a) Screening chromosome ends for learning disability. Br Med J 321:1240CrossRefGoogle Scholar
  9. Knight SJ, Flint J (2000b) Perfect endings: a review of subtelomeric probes and their use in clinical diagnosis. Med Genet 37:401–409CrossRefGoogle Scholar
  10. Linardopoulou EV, Williams EM, Fan Y, Friedman C, Young JM, Trask BJ (2005) Human subte-lomeres are hot spots of interchromosomal recombination and segmental duplication. Nature 437:94–100CrossRefPubMedGoogle Scholar
  11. Madon PF, Athalye AS, Parikh FR (2005) Polymorphic variants on chromosomes probably play a significant role in infertility. Reprod Biomed Online 11:726–732CrossRefPubMedGoogle Scholar
  12. Mewborn SK, Lese Martin C, Ledbetter DH (2005) The dynamic nature and evolutionary history of subtelomeric and pericentromeric regions. Cytogenet Genome Res 108:22–25CrossRefPubMedGoogle Scholar
  13. Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu JR (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 85:6622–6626CrossRefPubMedGoogle Scholar
  14. Mrasek K, Heller A, Rubtsov N, Trifonov V, Starke H, Rocchi M, Claussen U, Liehr T (2001) Reconstruction of the female Gorilla gorilla karyotype using 25-color FISH and multicolor banding (MCB). Cytogenet Cell Genet 93:242–248CrossRefPubMedGoogle Scholar
  15. Schmidt S, Claussen U, Liehr T, Weise A (2005) Evolution versus constitution: differences in chromosomal inversion. Hum Genet 117:213–219CrossRefPubMedGoogle Scholar
  16. Starke H, Nietzel A, Weise A, Heller A, Mrasek K, Belitz B, Kelbova C, Volleth M, Albrecht B, Mitulla B, Trappe R, Bartels I, Adolph S, Dufke A, Singer S, Stumm M, Wegner RD, Seidel J, Schmidt A, Kuechler A, Schreyer I, Claussen U, von Eggeling F, Liehr T (2003) Small supernumerary marker chromosomes (SMCs): genotype-phenotype correlation and classification.Hum Genet 114:51–67CrossRefPubMedGoogle Scholar
  17. Starke H, Seidel J, Henn W, Reichardt S, Volleth M, Stumm M, Behrend C, Sandig KR, Kelbova C, Senger G, Albrecht B, Hansmann I, Heller A, Claussen U, Liehr T (2002) Homologous sequences at human chromosome 9 bands p12 and q13–21.1 are involved in different patterns of pericentric rearrangements. Eur J Hum Genet 10:790–800CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Anja Weise
      Email author
    • Kristin Mrasek
      • Madeleine Gross
        • Vivien Klaschka
          • Thomas Liehr

            There are no affiliations available

            Personalised recommendations