Advertisement

FISH Banding Techniques

  • Thomas LiehrEmail author
  • Kristin Mrasek
  • Nadezda Kosyakova
  • Heike Nelle
  • Vladimir Trifonov
  • Marina Manvelyan
  • Anja Weise
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

During the last decade, numerous chromosome banding techniques based on FISH have been developed for the human and for the murine genomes. Here we review FISH banding techniques, which were recently defined as "any kind of FISH technique which provides the ability to characterize simultaneously several chromosomal subregions smaller than a chromosome arm." Standard chromosome banding techniques like GTG lead to a protein-related black-and-white banding pattern. FISH banding techniques are DNA-specific, more colorful, and thus more informative. FISH banding methods are successfully applied in research in evolutionary and radiation biology, as well as in studies on nuclear architecture. Moreover, their suitability for diagnostic purposes has been proven in prenatal, postnatal and tumor cytogenetics, indicating that they are important tools with the potential to partly replace conventional banding techniques in the future.

Keywords

Banding Technique Chromosomal Breakpoint Centromere Index Fish Technique Chromosome Banding Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Supported in part by the DFG (LI820/11-1, LI 820/15-1, LI820/17-1, 436 RUS 17/22/06, WE 3617/2-1), Evangelische Studienwerk e.V. Villigst, and Wilhelm Sander-Stiftung (99.105.1-2).

References

  1. Aurich-Costa J, Vannier A, Gregoire E, Nowak F, Cherif D (2001) IPM-FISH, a new M-FISH approach using IRS-PCR painting probes: application to the analysis of seven human prostate cell lines. Genes Chromosomes Cancer 30:143–160PubMedGoogle Scholar
  2. Benedek K, Chudoba I, Klein G, Wiener F, Mai S (2004) Rearrangements of the telomeric region of mouse chromosome 11 in Pre-B ABL/MYC cells revealed by mBANDing, spectral karyo-typing, and fluorescence in-situ hybridization with a subtelomeric probe. Chromosome Res 12:777–785CrossRefPubMedGoogle Scholar
  3. Chudoba I, Plesch A, Lörch T, Lemke J, Claussen U, Senger G (1999) High resolution multicolor-banding: a new technique for refined FISH analysis of human chromosomes. Cytogenet Cell Genet 84:156–160CrossRefPubMedGoogle Scholar
  4. Claussen U, Michel S, Mühlig P, Westermann M, Grummt UW, Kromeyer-Hauschild K, Liehr T (2002) Demystifying chromosome preparation and the implications for the concept of chromo some condensation during mitosis. Cytogenet Genome Res 98:136–146CrossRefPubMedGoogle Scholar
  5. Henegariu O, Dunai J, Chen XN, Korenberg JR, Ward DC, Greally JM (2001) A triple color FISH technique for mouse chromosome identification. Mamm Genome 12:462–465CrossRefPubMedGoogle Scholar
  6. Kakazu N, Ashihara E, Hada S, Ueda T, Sasaki H, Terada M, See TA (2001) Development of spectral colour banding in cytogenetic analysis. Lancet 357:529–530CrossRefPubMedGoogle Scholar
  7. Kakazu N, Bar-Am I, Hada S, Ago H, Abe T (2003) A new chromosome banding technique, spectral color banding (SCAN), for full characterization of chromosomal abnormalities. Genes Chromosomes Cancer 37:412–416CrossRefPubMedGoogle Scholar
  8. Lengauer C, Green ED, Cremer T (1992) Fluorescence in situ hybridization of YAC clones after Alu-PCR amplification. Genomics 13:826–828CrossRefPubMedGoogle Scholar
  9. Lichter P, Tang CJ, Call K, Hermanson G, Evans GA, Housman D, Ward DC (1990) High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247: 64–69CrossRefPubMedGoogle Scholar
  10. Liechty MC, Carpio CM, Aytay S, Clase AC, Puschus KL, Sims KR, Davis LM, Hozier JC (1999) Hybridization-based karyotyping of mouse chromosomes: hybridization-bands. Cytogenet Cell Genet 86:34–38CrossRefPubMedGoogle Scholar
  11. Liechty MC, Clase AC, Puschus KL, Aytay S, Carpio CM, Hall BK, Hozier JC (2000) Mouse linkage cytogenetics (L-C) probes. Cytogenet Cell Genet 88:163–167CrossRefPubMedGoogle Scholar
  12. Liehr T. 2008. Multicolor FISH (m-FISH) literature database: http://www.med.uni-jena.de/fish/mFISH/mFISHlit.htm
  13. Liehr T, Heller A, Starke H, Claussen U (2002) FISH banding methods: applications in research and diagnostics. Expert Rev Mol Diagn 2:217–225CrossRefPubMedGoogle Scholar
  14. Liehr T, Heller A, Starke H, Rubtsov N, Trifonov V, Mrasek K, Weise A, Kuechler A, Claussen U (2002a) Microdissection based high resolution multicolor banding for all 24 human chromo somes. Int J Mol Med 9:335–339Google Scholar
  15. Liehr T, Weise A, Heller A, Starke H, Mrasek K, Kuechler A, Weier HU, Claussen U (2002b) Multicolor chromosome banding (MCB) with YAC/BAC-based probes and region-specific microdissection DNA libraries. Cytogenet Genome Res 97:43–50CrossRefGoogle Scholar
  16. Liehr T, Starke H, Weise A, Lehrer H, Claussen U (2004) Multicolor FISH probe sets and their applications. Histol Histopathol 19:229–237PubMedGoogle Scholar
  17. Liehr T, Starke H, Heller A, Kosyakova N, Mrasek K, Gross M, Karst C, Steinhaeuser U, Hunstig F, Fickelscher I, Kuechler A, Trifonov V, Romanenko SA, Weise A (2006) Multicolor fluores cence in situ hybridization (FISH) applied to FISH-banding. Cytogenet Genome Res 114: 240–244CrossRefPubMedGoogle Scholar
  18. Müller S, Rocchi M, Ferguson-Smith MA, Wienberg J (1997) Toward a multicolor chromosome bar code for the entire human karyotype by fluorescence in situ hybridization. Hum Genet 100:271–278CrossRefPubMedGoogle Scholar
  19. Müller S, O'Brien PC, Ferguson-Smith MA, Wienberg J (1998) Cross-species colour segmenting: a novel tool in human karyotype analysis. Cytometry 33:445–452CrossRefPubMedGoogle Scholar
  20. Schröck E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith MA, Ning Y, Ledbetter DH, Bar-Am I, Soenksen D, Garini Y, Ried T (1996) Multicolor spectral karyotyp-ing of human chromosomes. Science 273:494–497CrossRefPubMedGoogle Scholar
  21. Speicher MR, Gwyn Ballard S, Ward DC (1996) Karyotyping human chromosomes by combina torial multi-fluor FISH. Nat Genet 12:368–375CrossRefPubMedGoogle Scholar
  22. Tjia WM, Sham JS, Hu L, Tai AL, Guan XY (2005) Characterization of 3p, 5p, and 3q in two nasopharyngeal carcinoma cell lines, using region-specific multiplex fluorescence in situ hybridization probes. Cancer Genet Cytogenet 158:61–66CrossRefPubMedGoogle Scholar
  23. Trifonov V, Karst C, Claussen U, Mrasek K, Michel S, Avner P, Liehr T (2005) Microdissection-derived murine mcb probes from somatic cell hybrids. J Histochem Cytochem 53:791–792CrossRefPubMedGoogle Scholar
  24. Weise A, Heller A, Starke H, Mrasek K, Kuechler A, Pool-Zobel BL, Claussen U, Liehr T (2003) Multitude multicolor chromosome banding (mMCB)—a comprehensive one-step multicolor FISH banding method. Cytogenet Genome Res 103:34–39CrossRefPubMedGoogle Scholar
  25. Weise A, Mrasek K, Fickelscher I, Claussen U, Cheung SW, Cai WW, Liehr T, Kosyakova N (2008) Molecular definition of high resolution multicolor banding (MCB) probes—first within the human DNA-sequence anchored FISH-banding probe set. J Histochem Cytochem (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Thomas Liehr
      Email author
    • Kristin Mrasek
      • Nadezda Kosyakova
        • Heike Nelle
          • Vladimir Trifonov
            • 1
          • Marina Manvelyan
            • 2
          • Anja Weise
            1. 1.Institute of Cytology and GeneticsRussian Academy of SciencesNovosibirskRussian Federation
            2. 2.Department of Genetic and Laboratory of CytogeneticsState UniversityArmeniaJerewan

            Personalised recommendations