Advertisement

Multiplex FISH and Spectral Karyotyping

  • Thomas LiehrEmail author
  • Kristin Mrasek
  • Nadezda Kosyakova
  • Hasmik Mkrtchyan
  • Joana Melo
  • Anna Polityko
  • Lukrecija Brecevic
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Multicolor fluorescence in situ hybridization (mFISH) assays are now indispensable for precisely describing complex chromosomal rearrangements and marker chromosomes. The routine application of such techniques to human chromosomes began in 1996 with the simultaneous use of all 24 human whole-chromosome painting (wcp) probes in multiplex FISH (M-FISH) and spectral karyotyping (SKY). This chapter reviews the available mFISH approaches that use wcp probes, and describes basic protocols for M-FISH and SKY.

Keywords

Human Papilloma Virus Chromosome Painting Spectral Karyotyping Methyl Coumarin Amino Methyl Coumarin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aurich-Costa J, Vannier A, Gregoire E, Nowak F, Cherif D (2001) IPM-FISH, a new M-FISH approach using IRS-PCR painting probes: Application to the analysis of seven human prostate cell lines. Genes Chromosomes Cancer 30:143–160PubMedGoogle Scholar
  2. Azofeifa J, Fauth C, Kraus J, Maierhofer C, Langer S, Bolzer A, Reichman J, Schuffenhauer S, Speicher MR (2000) An optimized probe set for the detection of small interchromosomal aberrations by use of 24-color FISH. Am J Hum Genet 66:1684–1688CrossRefPubMedGoogle Scholar
  3. Buwe A, Steinlein C, Koehler MR, Bar-Am I, Katzin N, Schmid M (2003) Multicolor spectral karyotyping of rat chromosomes. Cytogenet Genome Res 103:163–168CrossRefPubMedGoogle Scholar
  4. Chang SS, Mark HF (1997) Emerging molecular cytogenetic technologies. Cytobios 90:7–22PubMedGoogle Scholar
  5. Claussen U, Michel S, Mühlig P, Westermann M, Grummt UW, Kromeyer-Hauschild K, Liehr T (2002) Demystifying chromosome preparation and the implications for the concept of chromosome condensation during mitosis. Cytogenet Genome Res 98:136–146CrossRefPubMedGoogle Scholar
  6. Griffin DK, Haberman F, Masabanda J, O'Brien P, Bagga M, Sazanov A, Smith J, Burt DW, Ferguson-Smith M, Wienberg J (1999) Micro- and macrochromosome paints generated by flow cytometry and microdissection: Tools for mapping the chicken genome. Cytogenet Cell Genet 87:278–281CrossRefPubMedGoogle Scholar
  7. Karst C, Trifonov V, Romanenko SA, Claussen U, Mrasek K, Michel S, Avner P, Liehr T (2006) Molecular cytogenetic characterization of the mouse cell line WMP2 by spectral karyotyping and multicolor banding applying murine probes. Int J Mol Med 17:209–213PubMedGoogle Scholar
  8. Liehr T (2008) Multicolor FISH homepage. http://www.med.uni-jena.de/fish/mFISH/mFISHlit.htm
  9. Liehr T, Claussen U (2002) Multicolor-FISH approaches for the characterization of human chromosomes in clinical genetics and tumor cytogenetics. Curr Genom 3:213–235CrossRefGoogle Scholar
  10. Liehr T, Starke H, Weise A, Lehrer H, Claussen U (2004) Multicolor FISH probe sets and their applications. Histol Histopathol 19:229–237PubMedGoogle Scholar
  11. Liyanage M, Coleman A, du Manoir S, Veldman T, McCormack S, Dickson RB, Barlow C, Wynshaw-Boris A, Janz S, Wienberg J, Ferguson-Smith MA, Schröck E, Ried T (1996) Multicolour spectral karyotyping of mouse chromosomes. Nat Genet 14:312–315CrossRefPubMedGoogle Scholar
  12. Milne SB, Hoather T, O'Brien PCM, Yang F, Ferguson-Smith MA, Dobson J, Sargan D (2004) Karyotype of canine soft tissue sarcomas: A multi-colour, multi-species approach to canine chromosome painting. Chromosome Res 12:825–835CrossRefPubMedGoogle Scholar
  13. Mrasek K, Heller A, Rubtsov N, Trifonov V, Starke H, Rocchi M, Claussen U, Liehr T (2001) Reconstruction of the female Gorilla gorilla karyotype using 25-color FISH and multicolor banding (MCB). Cytogenet Cell Genet 93:242–248CrossRefPubMedGoogle Scholar
  14. Nederlof PM, Robinson D, Abuknesha R, Wiegant J, Hopman AH, Tanke HJ, Raap AK (1989) Three-color fluorescence in situ hybridization for the simultaneous detection of multiple nucleic acid sequences. Cytometry 10:20–27CrossRefPubMedGoogle Scholar
  15. Rutten KB, Pietsch C, Olek K, Neusser M, Beukeboom LW, Gadau J (2004) Chromosomal anchoring of linkage groups and identification of wing size QTL using markers and FISH probes derived from microdissected chromosomes in Nasonia (Pteromalidae: Hymenoptera). Cytogenet Genome Res 105:126–133CrossRefPubMedGoogle Scholar
  16. Schröck E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith MA, Ning Y, Ledbetter DH, Bar-Am I, Soenksen D, Garini Y, Ried T (1996) Multicolor spectral karyotyping of human chromosomes. Science 273:494–497CrossRefPubMedGoogle Scholar
  17. Senger G, Chudoba I, Plesch A (1998) Multicolor-FISH—the identification of chromosome aberrations by 24 colors. BIOforum 9:499–503Google Scholar
  18. Speicher MR, Gwyn Ballard S, Ward DC (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12:368–375CrossRefPubMedGoogle Scholar
  19. Szuhai K, Sandhaus E, Kolkman-Uljee SM, Lemaitre M, Truffert JC, Dirks RW, Tanke HJ, Fleuren GJ, Schuuring E, Raap AK (2001) A novel strategy for human papillomavirus detection and genotyping with SybrGreen and molecular beacon polymerase chain reaction. Am J Pathol 159:1651–1660PubMedGoogle Scholar
  20. Tanke HJ, De Haas RR, Sagner G, Ganser M, van Gijlswijk RP (1998) Use of platinum copropor-phyrin and delayed luminescence imaging to extend the number of targets FISH karyotyping. Cytometry 33:453–459CrossRefPubMedGoogle Scholar
  21. Tanke HJ, Wiegant J, van Gijlswijk RP, Bezrookove V, Pattenier H, Heetebrij RJ, Talman EG, Raap AK, Vrolijk J (1999) New strategy for multi-colour fluorescence in situ hybridisation: COBRA: COmbined Binary RAtio labelling. Eur J Hum Genet 7:2–11CrossRefPubMedGoogle Scholar
  22. Tosi S, Giudici G, Rambaldi A, Scherer SW, Bray-Ward P, Dirscherl L, Biondi A, Kearney L (1999) Characterization of the human myeloid leukemia-derived cell line GF-D8 by multiplex fluorescence in situ hybridization, subtelomeric probes, and comparative genomic hybridization. Genes Chromosomes Cancer 24:213–221CrossRefPubMedGoogle Scholar
  23. Yurov YB, Soloviev IV, Vorsanova SG, Marcais B, Roizes G, Lewis R (1996) High resolution multicolor fluorescence in situ hybridization using cyanine and fluorescein dyes: Rapid chromosome identification by directly fluorescently labeled alphoid DNA probes. Hum Genet 97:390–398CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Thomas Liehr
      Email author
    • Kristin Mrasek
      • Nadezda Kosyakova
        • Hasmik Mkrtchyan
          • 1
        • Joana Melo
          • 2
        • Anna Polityko
          • 3
        • Lukrecija Brecevic
          • 3
        1. 1.Department of Genetic and Laboratory of CytogeneticsState UniversityArmeniaJerewan
        2. 2.Laboratório de Citogenética - Diagnóstico PrénatalFaculdade de Medicina da Universidade de CoimbraRua LargaPortugal
        3. 3.Institut of Hereditary DiseasesMinskBelarus

        Personalised recommendations