Laser Capture Microdissection for Protein and NanoString RNA Analysis

  • Yelena Golubeva
  • Rosalba Salcedo
  • Claudius Mueller
  • Lance A. Liotta
  • Virginia Espina
Part of the Methods in Molecular Biology book series (MIMB, volume 931)


Laser capture microdissection (LCM) allows the precise procurement of enriched cell populations from a heterogeneous tissue, or live cell culture, under direct microscopic visualization. Histologically enriched cell populations can be procured by harvesting cells of interest directly or isolating specific cells by ablating unwanted cells. The basic components of laser microdissection technology are (a) visualization of cells via light microscopy, (b) transfer of laser energy to a thermolabile polymer with either the formation of a polymer-cell composite (capture method) or transfer of laser energy via an ultraviolet laser to photovolatize a region of tissue (cutting method), and (c) removal of cells of interest from the heterogeneous tissue section. The capture and cutting methods (instruments) for laser microdissection differ in the manner by which cells of interest are removed from the heterogeneous sample. Laser energy in the capture method is infrared (810 nm), while in the cutting mode the laser is ultraviolet (355 nm). Infrared lasers melt a thermolabile polymer that adheres to the cells of interest, whereas ultraviolet lasers ablate cells for either removal of unwanted cells or excision of a defined area of cells. LCM technology is applicable to an array of applications including mass spectrometry, DNA genotyping and loss-of-heterozygosity analysis, RNA transcript profiling, cDNA library generation, proteomics discovery, and signal kinase pathway profiling. This chapter describes LCM using an Arcturus XT instrument for downstream protein sample analysis and using an mmi CellCut Plus® instrument for RNA analysis via NanoString technology.

Key words

DNA Infrared laser Laser capture microdissection Molecular profiling NanoString Phopshoprotein Pre-analytical variability Protein RNA Tissue Tissue heterogeneity UV laser 



Thanks to the staff of Pathology-Histotechnology Laboratory, SAIC-NCI-Frederick. The work was funded in part by NCI Contract HHSN261200800001E.


  1. 1.
    Wulfkuhle JD, Speer R, Pierobon M et al (2008) Multiplexed cell signaling analysis of human breast cancer applications for personalized therapy. J Proteome Res 7:1508–1517PubMedCrossRefGoogle Scholar
  2. 2.
    Bonner RF, Emmert-Buck M, Cole K et al (1997) Laser capture microdissection: molecular analysis of tissue. Science 278:1481–1483PubMedCrossRefGoogle Scholar
  3. 3.
    Emmert-Buck MR, Bonner RF, Smith PD et al (1996) Laser capture microdissection. Science 274:998–1001PubMedCrossRefGoogle Scholar
  4. 4.
    Ma XJ, Dahiya S, Richardson EA et al (2009) Gene expression profiling of tumor microenvironment during breast cancer progression. Breast Cancer Res 11:R7PubMedCrossRefGoogle Scholar
  5. 5.
    Nakazono M, Qiu F, Borsuk LA et al (2003) Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell 15:583–596PubMedCrossRefGoogle Scholar
  6. 6.
    Petricoin EF III, Bichsel VE, Calvert VS et al (2005) Mapping molecular networks using proteomics: a vision for patient-tailored combination therapy. J Clin Oncol 23:3614–3621PubMedCrossRefGoogle Scholar
  7. 7.
    Petricoin EF III, Espina V, Araujo RP et al (2007) Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res 67:3431–3440PubMedCrossRefGoogle Scholar
  8. 8.
    Wulfkuhle JD, Sgroi DC, Krutzsch H et al (2002) Proteomics of human breast ductal carcinoma in situ. Cancer Res 62:6740–6749PubMedGoogle Scholar
  9. 9.
    Angeles G, Berrio-Sierra J, Joseleau JP et al (2006) Preparative laser capture microdissection and single-pot cell wall material preparation: a novel method for tissue-specific analysis. Planta 224:228–232PubMedCrossRefGoogle Scholar
  10. 10.
    Gallup JM, Kawashima K, Lucero G et al (2005) New quick method for isolating RNA from laser captured cells stained by immunofluorescent immunohistochemistry; RNA suitable for direct use in fluorogenic TaqMan one-step real-time RT-PCR. Biol Proced Online 7:70–92PubMedCrossRefGoogle Scholar
  11. 11.
    Mouledous L, Hunt S, Harcourt R et al (2003) Navigated laser capture microdissection as an alternative to direct histological staining for proteomic analysis of brain samples. Proteomics 3:610–615PubMedCrossRefGoogle Scholar
  12. 12.
    Nakamura N, Ruebel K, Jin L et al (2007) Laser capture microdissection for analysis of single cells. Methods Mol Med 132:11–18PubMedCrossRefGoogle Scholar
  13. 13.
    VanMeter AJ, Rodriguez AS, Bowman ED et al (2008) Laser capture microdissection and protein microarray analysis of human non-small cell lung cancer: differential epidermal growth factor receptor (EGFR) phosphorylation events associated with mutated EGFR compared with wild type. Mol Cell Proteomics 7:1902–1924PubMedCrossRefGoogle Scholar
  14. 14.
    Wong MH, Saam JR, Stappenbeck TS et al (2000) Genetic mosaic analysis based on Cre recombinase and navigated laser capture microdissection. Proc Natl Acad Sci U S A 97:12601–12606PubMedCrossRefGoogle Scholar
  15. 15.
    Kennedy J, Katsuta H, Jung MH et al (2010) Protective unfolded protein response in human pancreatic beta cells transplanted into mice. PLoS One 5:e11211PubMedCrossRefGoogle Scholar
  16. 16.
    Cha S, Imielinski MB, Rejtar T et al (2010) In situ proteomic analysis of human breast cancer epithelial cells using laser capture microdissection: annotation by protein set enrichment analysis and gene ontology. Mol Cell Proteomics 9:2529–2544PubMedCrossRefGoogle Scholar
  17. 17.
    Kolble K (2000) The LEICA microdissection system: design and applications. J Mol Med 78:B24–B25PubMedGoogle Scholar
  18. 18.
    Micke P, Ostman A, Lundeberg J et al (2005) Laser-assisted cell microdissection using the PALM system. Methods Mol Biol 293:151–166PubMedGoogle Scholar
  19. 19.
    Palinauskas V, Dolnik OV, Valkiunas G et al (2009) Laser microdissection microscopy and single cell PCR of avian hemosporidians. J Parasitol 96:420–424CrossRefGoogle Scholar
  20. 20.
    Schermelleh L, Thalhammer S, Heckl W et al (1999) Laser microdissection and laser pressure catapulting for the generation of chromosome-specific paint probes. Biotechniques 27:362–367PubMedGoogle Scholar
  21. 21.
    Schutze K, Posl H, Lahr G (1998) Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine. Cell Mol Biol (Noisy-le-Grand) 44:735–746Google Scholar
  22. 22.
    Espina V, Edmiston KH, Heiby M et al (2008) A portrait of tissue phosphoprotein stability in the clinical tissue procurement process. Mol Cell Proteomics 7:1998–2018PubMedCrossRefGoogle Scholar
  23. 23.
    Espina V, Mueller C, Edmiston K et al (2009) Tissue is alive: new technologies are needed to address the problems of protein biomarker pre-analytical variability. Proteomics Clin Appl 3:874–882PubMedCrossRefGoogle Scholar
  24. 24.
    Lim MD, Dickherber A, Compton CC (2011) Before you analyze a human specimen, think quality, variability, and bias. Anal Chem 83:8–13PubMedCrossRefGoogle Scholar
  25. 25.
    Becker KF, Schott C, Hipp S et al (2007) Quantitative protein analysis from formalin-fixed tissues: implications for translational clinical research and nanoscale molecular diagnosis. J Pathol 211:370–378PubMedCrossRefGoogle Scholar
  26. 26.
    Fox CH, Johnson FB, Whiting J et al (1985) Formaldehyde fixation. J Histochem Cytochem 33:845–853PubMedCrossRefGoogle Scholar
  27. 27.
    Helander KG (1994) Kinetic studies of formaldehyde binding in tissue. Biotech Histochem 69:177–179PubMedCrossRefGoogle Scholar
  28. 28.
    Srinivasan M, Sedmak D, Jewell S (2002) Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol 161:1961–1971PubMedCrossRefGoogle Scholar
  29. 29.
    Mueller C, Liotta LA, Espina V (2010) Reverse phase protein microarrays advance to use in clinical trials. Mol Oncol 4:461–481PubMedCrossRefGoogle Scholar
  30. 30.
    Geiss GK, Bumgarner RE, Birditt B et al (2008) Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 26:317–325PubMedCrossRefGoogle Scholar
  31. 31.
    Botling J, Edlund K, Segersten U et al (2009) Impact of thawing on RNA integrity and gene expression analysis in fresh frozen tissue. Diagn Mol Pathol 18(1):44–52PubMedCrossRefGoogle Scholar
  32. 32.
    Micke P, Ohshima M, Tahmasebpoor S et al (2006) Biobanking of fresh frozen tissue: RNA is stable in nonfixed surgical specimens. Lab Invest 86:202–211PubMedCrossRefGoogle Scholar
  33. 33.
    Xiang CC, Mezey E, Chen M et al (2004) Using DSP, a reversible cross-linker, to fix tissue sections for immunostaining, microdissection and expression profiling. Nucleic Acids Res 32:e185PubMedCrossRefGoogle Scholar
  34. 34.
    Espina V, Wulfkuhle JD, Calvert VS et al (2006) Laser-capture microdissection. Nat Protoc 1:586–603PubMedCrossRefGoogle Scholar
  35. 35.
    Golubeva Y, Rogers K (2009) Collection and preparation of rodent tissue samples for histopathological and molecular studies in carcinogenesis. Methods Mol Biol 511:3–60PubMedCrossRefGoogle Scholar
  36. 36.
    Applied Biosystems/Life Technologies (2007) ArcturusXT user guide: flexible and modular laser capture microdissection, rev. A. Applied Biosystems/Life Technologies, Foster City, CAGoogle Scholar
  37. 37.
    NanoString Technologies (2009) NanoString technical note: sample flexibility for gene expression analysis with the nCounterTM analysis system, in v.20091113. NanoString Technologies, Seattle, WAGoogle Scholar
  38. 38.
    Iyer EP, Cox DN (2010) Laser capture microdissection of Drosophila peripheral neurons. J Vis Exp (39). pii:2016Google Scholar
  39. 39.
    Kiernan J (2008) Histological staining in one or two colours. In: Kiernan J (ed) Histological and histochemical methods, 4th edn. Scion, Oxfordshire, pp 146–147Google Scholar
  40. 40.
    Buckanovich RJ, Sasaroli D, O’Brien-Jenkins A et al (2006) Use of immuno-LCM to identify the in situ expression profile of cellular constituents of the tumor microenvironment. Cancer Biol Ther 5:635–642PubMedCrossRefGoogle Scholar
  41. 41.
    Agar NS, Halliday GM, Barnetson RS et al (2003) A novel technique for the examination of skin biopsies by laser capture microdissection. J Cutan Pathol 30:265–270PubMedCrossRefGoogle Scholar
  42. 42.
    Luzzi VI, Holtschlag V, Watson MA (2005) Gene expression profiling of primary tumor cell populations using laser capture microdissection, RNA transcript amplification, and GeneChip microarrays. Methods Mol Biol 293:187–207PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Yelena Golubeva
    • 1
  • Rosalba Salcedo
    • 1
  • Claudius Mueller
    • 2
  • Lance A. Liotta
    • 2
  • Virginia Espina
    • 2
  1. 1.National Cancer Institute-Frederick/SAICFrederickUSA
  2. 2.Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasUSA

Personalised recommendations