Multivariate Cell Analysis

Techniques for Correlated Measurements of DNA and Other Cellular Constituents
  • Harry A. Crissman
  • John A. Steinkamp
Part of the Biological Methods book series (BM)


Analysis of the cell cycle was significantly advanced by the development of photometric methods for quantitative measurement of biochemical constituents in single cells. Population biochemical analysis could then be performed on a cell-by-cell basis, and distinct subpopulations discriminated and quantified. Such methods as used in early studies by Casperson and Schultz (10) and others [see review by Swift (84)] demonstrated the potential of ultraviolet (260 nm) absorption cytophotometry for determining cellular nucleic acids content. Interestingly, Kamentsky et al. (51), in one of the earliest reports on flow cytometry, utilized this analytical technique along with cellular light scattering measurement. Cytochemical analysis incorporating colorometric procedures, such as the Feulgen reaction (33), allowed for microspectrophotometric quantitation of DNA in single cells. Pyronin Y staining was used by Brachet (7) and later by Kurnick (54) for RNA determinations. The quantitative cytophotometric methods employed in these early studies (9) accurately established that both nucleic acid as well as protein contents were elevated in rapidly growing cells compared to cells in stationary phase-correlated biochemical events that are now well established for the cell cycle.


Propidium Iodide Chinese Hamster Ovary Cell Ethidium Bromide Cellular Constituent Sequential Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alabaster, O., Tannenbaum, E., Habbersett, M. C., Magrath, I., and Herman, C. Drug-induced changes in DNA fluorescence intensity detected by flow microfluorometry and their implications for analysis of DNA content distributions. Cancer Res., 38: 1031–1035, 1978.PubMedGoogle Scholar
  2. 2.
    Arndt-Jovin, D. J., Grimwade, B. G., and Jovin, T. M. A dual laser flow sorter utilizing a CW pumped dye laser. Cytometry, 1: 127–131, 1980.PubMedCrossRefGoogle Scholar
  3. 3.
    Arndt-Jovin, D. J. and Jovin, T. M. Analysis and sorting of living cells according to deoxyribonucleic acid content. J. Histochem. Cytochem., 25: 585–589, 1977.PubMedGoogle Scholar
  4. 4.
    Barlogie, B., Spitzer, G., Hart, J. S., Johnston, D., Buchner, T., and Schumann, J. DNA histogram analysis of human hemopoietic cells. Blood, 48: 245–258, 1976.PubMedGoogle Scholar
  5. 5.
    Bensen, R. C., Meyer, R. A., Zaruba, M. E., and McKhann, G. M. Cellular autofluorescence-Is it due to flavins? J. Histochem. Cytochem., 27: 44–48, 1979.Google Scholar
  6. 6.
    Berkhan, E. Pulse-cytophotometry as a method for rapid photometric analysis of cells. In: (C. A. M. Haanen, H. F. P. Hillen, and J. M. C. Wessels, eds.), Pulse Cytophotometry. Ghent: European Press, 1975.Google Scholar
  7. 7.
    Brachet, J. La detection histochimique des acides pintose nucleiques. Comptes Rendus Des Seances De La Societe De Biologie, 133: 89–90, 1940.Google Scholar
  8. 8.
    Casperson, T., Zech, L., Modest, J., Foley, G. E., Wagh, U., and Simonsson, E. DNA-binding fluorochromes for the study of the organization of the metaphase nucleus. Exp. Cell. Res., 58:141–152, 1969.CrossRefGoogle Scholar
  9. 9.
    Casperson, T. and Santesson, L. Studies on protein metabolism in the cells of epithelial tumors. Acta Radiol. (suppl.), 46: 1–105, 1942.Google Scholar
  10. 10.
    Casperson, T. and Schultz, J. Nucleic acid metabolism of the chromosomes in relation to gene reproduction. Nature, 142: 294–295, 1938.CrossRefGoogle Scholar
  11. 11.
    Coulson, P. A., Bishop, A. O., and Lenarduzzi, R. Quantitation of cellular deoxyribonucleic acid by flow cytometry. J. Histochem. Cytochem., 25: 1147–1153, 1977.PubMedGoogle Scholar
  12. 12.
    Cram, L. S., Bartholdi, M. F., Wheeless, L. L., and Gray, J. W. Morphological analysis by scanning flow cytometry. In: (M. A. Van Dilla, P. N. Dean, O. D. Laerum, and M. R. Melamed, eds.), Flow Cytometry Instrumentation and Data Analysis, New York: Academic, 1985.Google Scholar
  13. 13.
    Crissman, H. A., Mullaney, P. F., and Steinkamp, J. A. Methods and applications of flow systems for analysis and sorting of mammalian cells. In: (D. M. Prescott, ed.), Methods in Cell Biology, vol. 9, New York: Academic, 1975.Google Scholar
  14. 14.
    Crissman, H. A., Orlicky, D. A., and Kissane, R. J. Fluorescent DNA probes for flow cytometry. J. Histochem. Cytochem., 27:1652–1654, 1979.PubMedGoogle Scholar
  15. 15.
    Crissman, H. A. and Steinkamp, J. A. Rapid simultaneous measurement of DNA, protein and cell volume in single cells from large mammalian cell populations. J. Cell Biol., 59: 766–771, 1973.PubMedCrossRefGoogle Scholar
  16. 16.
    Crissman, H. A. and Steinkamp, J. A. Rapid, one step staining procedures for analysis of cellular DNA and protein by single and dual laser flow cytometry. Cytometry, 3: 84–90, 1982.PubMedCrossRefGoogle Scholar
  17. 17.
    Crissman, H. A., Stevenson, A. P., Kissane, R. J., and Tobey, R. A. Techniques for quantitative staining of cellular DNA for flow cytometric analysis. In: (M. R. Melamed, P. F. Mullaney, and M. L. Mendelsohn, eds.), Flow Cytometry and Sorting. New York: John Wiley, 1979.Google Scholar
  18. 18.
    Crissman, H. A. and Tobey, R. A. Cell cycle analysis in 20 minutes. Science, 184: 1297–1298, 1974.PubMedCrossRefGoogle Scholar
  19. 19.
    Crissman, H. A., Darzynkiewicz, Z., Tobey, R. A., and Steinkamp, J. A. Normal and perturbed CHO cells: Correlation of DNA, RNA and protein by flow cytometry. J. Cell. Biol., 101: 141–147, 1985a.PubMedCrossRefGoogle Scholar
  20. 20.
    Crissman, H. A., Darzynkiewicz, Z., Tobey, R. A., and Steinkamp, J. A. Correlated measurements of DNA, RNA and protein in individual cells by flow cytometry. Science, 228: 1321–1324, 1985b.PubMedCrossRefGoogle Scholar
  21. 21.
    Crissman, H. A., Von Egmond, J. V., Holdrinet, R. G., Pennings, A., and Hannen, C. Simplified method for DNA and protein staining of human hematopoietic cell samples. Cytometry, 2: 59–62, 1981.PubMedCrossRefGoogle Scholar
  22. 22.
    Culling, C. and Vassar, P. Desoxyribose nucleic acid. A fluorescent histochemical technique. Arch. Pathol., 71: 88–92, 1961.Google Scholar
  23. 23.
    Cunningham, R. E., Skramstad, K. S., Newburger, A. E., and Schackney, S. E. Artifacts associated with mithramycin fluorescence in the clinical detection and quantitation of aneuploidy by flow cytometry. J. Histochem. Cytochem., 30: 317–322, 1982.PubMedGoogle Scholar
  24. 24.
    Darzynkiewicz, Z. Cytochemical probes of cycling and quiescent cells applicable for flow cytometry. In: (J. W. Gray and Z. Darzynkiewicz, eds.), Techniques in Cell Cycle Analysis. New Jersey: Humana, 1986.Google Scholar
  25. 25.
    Darzynkiewicz, Z., Staiano-Coico, L., and Melamed, M. R. Increased mitochondrial uptake of rhodamine 123 during lymphocyte stimulation. Proc. Natl. Acad. Sci. USA, 78: 2383–2387, 1981.PubMedCrossRefGoogle Scholar
  26. 26.
    Darzynkiewicz, Z., Traganos, F., Sharpless, T., and Melamed, M. R. Lymphocyte stimulation: A rapid, multiparameter analysis. Proc. Natl. Acad. Sci. USA, 76: 358–362, 1976.CrossRefGoogle Scholar
  27. 27.
    Darzynkiewicz, Z., Traganos, F., Staiano-Coico, L., Kapuscinski, J., and Melamed, M. R. Interaction of rhodamine 123 with living cells studied by flow cytometry. Cancer Res., 42: 799–806, 1982.PubMedGoogle Scholar
  28. 28.
    Dean, P. N., Gray, J. W., and Dolbeare, F. A. The analysis and interpretation of DNA distributions measured by flow cytometry. Cytometry, 3: 188–195, 1982.PubMedCrossRefGoogle Scholar
  29. 29.
    Dean, P. N. and Jett, J. H. Mathematical analysis of DNA distributions derived from flow microfluorometry. J. Cell Biol., 60: 523–527, 1974.PubMedCrossRefGoogle Scholar
  30. 30.
    Dean, P. N. and Pinkel, D. High resolution dual laser flow cytometry. J. Histochem. Cytochem., 26: 622, 1978.PubMedGoogle Scholar
  31. 31.
    Dittrich, W. and Gohde, W. Impulse fluorometry with single cells in suspension. Z. Naturforsch, 24B: 360, 1969.Google Scholar
  32. 32.
    Dolbeare, F., Gratzner, H. G., Pallavicini, M. G., and Gray, J. W. Flow cytometric measurement of total DNA content and incorporated bromodeoxyuridine. Proc. Natl. Acad. Sci. USA, 80: 5573–5577, 1983.PubMedCrossRefGoogle Scholar
  33. 33.
    Feulgen, R. and Rossenbeck, H. Mikroskopisch-chemischer nachweis einer nucleinsaure von typus der thymonucleinsaure und die darauf beruhende elektive farbung von zellkerzen in mikroskopischen praparaten. Z. Physiol. Chem., 135: 203–244, 1924.Google Scholar
  34. 34.
    Frankfurt, O. S. Flow cytometric analysis of double-stranded RNA content distributions. J. Histochem. Cytochem., 28: 663–669, 1980.PubMedGoogle Scholar
  35. 35.
    Fried, J., Doblin, J., Takamoto, S., Perez, A., Hansen, H., and Clarkson, B. Effect of Hoechst 33342 on survival and growth of two tumor cell lines and on hematopoietically normal bone marrow cells. Cytometry, 3: 42–47, 1982.PubMedCrossRefGoogle Scholar
  36. 36.
    Fried, J., Perez, A. G., and Clarkson, B. D. Flow cytofluorometric analysis of cell cycle distributions using propidium iodide. Properties of the method and mathematical analysis of the data. J. Cell Biol., 71: 174–181, 1976.CrossRefGoogle Scholar
  37. 37.
    Gohde, W., Spies, I., Schumann, J., Buchner, T., and Klein-Dopke, G. Two parameter analysis of DNA and protein content of tumor cells. In: (T. Buchner, W. Gohde, and J. Schumann, eds.), Pulse-Cytophotometry, Gent, Belgium: European Press, 1976.Google Scholar
  38. 38.
    Gratzner, H. G. Monoclonal antibody to 5-bromo-and 5-iododeoxy-uridine: A new reagent for detection of DNA replication. Science, 218: 474–475, 1982.PubMedCrossRefGoogle Scholar
  39. 39.
    Gray, J. W. Cell cycle analysis of perturbed cell populations: Computer stimulation of sequential DNA distributions. Cell Tissue Kinet., 9: 499, 1976.PubMedGoogle Scholar
  40. 40.
    Gray, J. W., Dolbeare, F., Pallavicini, M., and Vanderlaan, M. Flow cytokinetics. In: (J. W. Gray and Z. Darzynkiewicz, eds.), Techniques in Cell Cycle Analysis, New Jersey: Humana, 1986.Google Scholar
  41. 41.
    Gray, J. W., Langlois, R. G., Carrano, A. V., Burkhart-Schultz, K., and Van Dilla, M. A. High resolution chromosome analysis: One and two parameter flow cytometry. Chromosoma, 73: 9–27, 1979.CrossRefGoogle Scholar
  42. 42.
    Hedley, D. W., Friedlander, M. L., Taylor, I. W., Rugg, C. A., and Musgrove, E. A. Method for analysis of cellular DNA content of paraffin embedded pathological material using flow cytometry. J. Histochem. Cytochem., 31: 1333–1335, 1983.PubMedGoogle Scholar
  43. 43.
    Hiddemann, W., Schumann, J., Andreeff, M., Barlogie, B., Herman, C. J., Jeff, R. C., Mayall, B., Murphy, R. F., and Sandberg, A. Convention on nomenclature for DNA cytometry. Cytometry, 5: 445–446, 1984.CrossRefGoogle Scholar
  44. 44.
    Hilwig, I. and Gropp, A. Decondensation of constitutive hetero-chromatin in L cell chromosomes by a benzimidazole compound (“33258 Hoechst”). Exp. Cell Res., 81: 474–477, 1973.PubMedCrossRefGoogle Scholar
  45. 45.
    Hudson, B., Upholt, W. B., Deninny, J., and Vinograd, J. The use of an ethidium bromide analogue in the dye-bouyant density procedure for the isolation of closed circular DNA. The variation of the superhelix density of mitochondrial DNA. Proc. Natl. Acad. Sci. USA, 62: 813–820, 1969.PubMedCrossRefGoogle Scholar
  46. 46.
    James, T. W. and Bohman, R. Proliferation of mitochondria during the cell cycle of the human cell line (HL-60). J. Cell Biol., 89: 256–260, 1981.PubMedCrossRefGoogle Scholar
  47. 47.
    Jensen, R. H. Chromomycin A3 as a fluorescent probe for flow cytometry of human gynecological samples. J. Histochem. Cytochem., 25: 573–579, 1977.PubMedGoogle Scholar
  48. 48.
    Jensen, R. H., Langlois, R. G., and Mayall, B. H. Strategies for choosing a DNA stain for flow cytometry of metaphase chromosomes. J. Histochem. Cytochem., 25: 954–964, 1977.PubMedGoogle Scholar
  49. 49.
    Johnson, L. V., Walsh, M. L., Bockus, B. J., and Chen, L. B. Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J. Cell Biol., 88: 526–535, 1981.PubMedCrossRefGoogle Scholar
  50. 50.
    Johnson, L. V., Walsh, M. L., and Chen, L. B. Localization of mitochondria in living cells with rhodamine 123. Proc. Natl. Acad. Sci. USA, 77: 990–994, 1980.PubMedCrossRefGoogle Scholar
  51. 51.
    Kamentsky, L. A., Melamed, M. R., and Derman, H. Spectrophotometer: New instrument for ultrarapid cell analysis. Science, 150: 630–631, 1965.PubMedCrossRefGoogle Scholar
  52. 52.
    Kraemer, P., Deaven, L., Crissman, H., and Van Dilla, M. DNA constancy despite variability in chromosome number. In: (E. J. DuPraw, ed.), Advances in Cell and Molecular Biology, vol. 2, New York: Academic, 1972.Google Scholar
  53. 53.
    Krishan, A. Rapid flow cytophotometric analysis of mammalian cell cycle by propidium iodide staining. J. Cell Biol., 66: 188–193, 1975.PubMedCrossRefGoogle Scholar
  54. 54.
    Kurnick, N. B. Histological staining with methylgreen-pyronin. Stain Technol., 27: 233–242, 1952.PubMedGoogle Scholar
  55. 55.
    Lalande, M. E., Ling, V., and Miller, R. G. Hoechst 33342 dye uptake as a probe of membrane permeability changes in mammalian cells. Proc. Natl. Acad. Sci. USA, 78: 363–367, 1981.PubMedCrossRefGoogle Scholar
  56. 56.
    Langlois, R. G. and Jensen, R. H. Interaction of DNA specific fluorescent stains bound to mammalian cells. J. Histochem. Cytochem., 27: 72–79, 1979.PubMedGoogle Scholar
  57. 57.
    Latreille, J., Barlogie, B., Johnston, D., Drewinko, B., and Alexanian, R. Ploidy and proliferative characteristics in monoclonal gammopathies. Blood, 59: 43–51, 1982.PubMedGoogle Scholar
  58. 58.
    Latt, S. A. Microfluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomes. Proc. Natl. Acad. Sci. USA, 70: 3395–3399, 1973.PubMedCrossRefGoogle Scholar
  59. 59.
    Latt, S. A. Fluorescent probes of DNA microstructure and synthesis. In: (M. R. Melamed, P. F. Mullaney, and M. L. Mendelsohn, eds.), Flow Cytometry and Sorting, New York: John Wiley, 1979.Google Scholar
  60. 60.
    Latt, S. A., George, Y. S., and Gray, J. W. Flow cytometric analysis of bromodeoxyuridine-substituted cells stained with 33258 Hoechst. J. Histochem. Cytochem., 25: 927–934, 1977.PubMedGoogle Scholar
  61. 61.
    Latt, S. A., Marino, M., and Lalande, M. New fluorochromes compatible with high wavelength excitation for flow cytometric analysis of cellular nucleic acids. Cytometry, 5: 339–347, 1984.PubMedCrossRefGoogle Scholar
  62. 62.
    Latt, S. A. and Stetten, G. Spectral studies on 33258 Hoechst and related bisbenzimidazole dyes for fluorescent detection of deoxyribonucleic acid synthesis. J. Histochem. Cytochem., 24: 24–33, 1976.PubMedGoogle Scholar
  63. 63.
    LePecq, J. B. and Paoletti, C. A fluorescent complex between ethidium bromide and nucleic acids. J. Mol. Biol., 27: 87–106, 1967.PubMedCrossRefGoogle Scholar
  64. 64.
    Loken, M. R. Separation of viable T and B lymphocytes using a cytochemical stain, Hoechst 33342. J. Histochem. Cytochem., 28: 36–39, 1980.PubMedGoogle Scholar
  65. 65.
    Mayall, B. H. and Mendelsohn, M. L. Errors in absorption cytophotometry: Some theoretical and practical considerations. In: (G. L. Wied and G. G. Bahr, eds.), Introduction to Quantitative Cytochemistry II, New York: Academic, 1970.Google Scholar
  66. 66.
    Mazzini, G. and Giordano, P. Effects of some solvents on fluorescence intensity of phenoantridinic derivatives-DNA complexes: Flow cytometric applications. In: (O. D. Laerum, T. Lindmo, and E. Thorud, eds.), Flow Cytometry IV, Bergen, Norway: Universitetsforlaget, 1979.Google Scholar
  67. 67.
    Mueller, W. and Gautier, F. Interaction of heteroaromatic compounds with nucleic acids. A-T specific nonintercalating DNA ligands. Eur. J. Biochem., 54: 385–394, 1975.CrossRefGoogle Scholar
  68. 68.
    Pallavicini, M. G., Lalande, M. E., Miller, R. G., and Hill, R. P. Cell cycle distribution of chronically hypoxic cells and determination of the clonogenic potential of cells accumulated in G2 + M phases after irradiation of a solid tumor in vivo. Cancer Res., 39:1891–1897,1979.PubMedGoogle Scholar
  69. 69.
    Pollack, A., Prudhomme, D. L., Greenstein, D. B., Irvin III, G. L., Claflin, A. J., and Block, N. L. Flow cytometric analysis of RNA content in different cell populations using pyronin Y and methyl green. Cytometry, 3: 28–35, 1982.PubMedCrossRefGoogle Scholar
  70. 70.
    Roti-Roti, J. L., Higashikubo, R., Blair, O. C., and Vygur, H. Cell cycle position and nuclear protein content. Cytometry, 3: 91–96, 1982.PubMedCrossRefGoogle Scholar
  71. 71.
    Sahar, E. and Latt, S. A. Enhancement of banding patterns in human metaphase chromosomes by energy transfer. Proc. Natl. Acad. Sci. USA, 75: 5650–5654, 1978.PubMedCrossRefGoogle Scholar
  72. 72.
    Salzman, G. C., Wilkins, S. F., and Whitfill, J. A. Modular computer programs for flow cytometry and sorting: the LACEL system. Cytometry, 1: 325–336, 1981.PubMedCrossRefGoogle Scholar
  73. 73.
    Shapiro, H. M. Flow cytometric estimation of DNA and RNA content in intact cells stained with Hoechst 33342 and pyronin Y. Cytometry, 2: 143–150, 1981.PubMedCrossRefGoogle Scholar
  74. 74.
    Shapiro, H., Schildkraut, R., Curbelo, R., Brough-Turner, R., Webb, R., Brown, D., and Block, M. Cytomat R: A computer-controlled multiple laser source multiparameter flow cytophotometer system. J. Histochem. Cytochem., 25: 836–844, 1977.PubMedGoogle Scholar
  75. 75.
    Steinkamp, J. A. Flow cytometry. Rev. Sci. Instrum., 55:1375–1400, 1984.CrossRefGoogle Scholar
  76. 76.
    Steinkamp, J. A., Orlicky, D. A., and Crissman, H. A. Dual-laser flow cytometry of single mammalian cells. J. Histochem. Cytochem., 27: 273, 1979.PubMedGoogle Scholar
  77. 77.
    Steinkamp, J. A., Stewart, C. C., and Crissman, H. A. Three-color fluorescence measurements on single cells excited at three laser wavelengths. Cytometry, 2: 226–231, 1982.PubMedCrossRefGoogle Scholar
  78. 78.
    Stohr, M. Double beam application in flow techniques and recent results, In: (W. Gohde, J. Schumann, and Th. Buchner, eds.), Pulse Cytophotometry, Ghent: European Press, 1976.Google Scholar
  79. 79.
    Stohr, M., Eipel, H., Goerttler, K., and Vogt-Schaden, M. Extended application of flow microfluorometry by means of dual laser excitation. Histochemistry, 51: 305–313, 1977.PubMedCrossRefGoogle Scholar
  80. 80.
    Stohr, M. and Vogt-Schaden, M. A new dual staining technique for simultaneous flow cytometric DNA analysis of living and dead cells. In: (O. D. Laerum, T. Lindmo, and E. Thorud, eds.), Flow Cytometry IV. Bergen, Norway: Universitetsforlaget, 1979.Google Scholar
  81. 81.
    Stohr, M., Vogt-Schaden, M., Knobloch, M., Vogel, R., and Futter-man, G. Evaluation of eight fluorochrome combinations for simultaneous DNA-protein flow analyses. Stain Technol., 53: 205–215, 1978.PubMedGoogle Scholar
  82. 82.
    Swartzendruber, D. E. A bromodeoxyuridine-mithramycin technique for detecting cycling and noncycling cells by flow microfluorometry. Exp. Cell Res., 209: 439–443, 1977a.CrossRefGoogle Scholar
  83. 83.
    Swartzendruber, D. E. Microfluorometric analysis of cellular DNA following incorporation of bromodeoxyuridine. J. Cell Physiol., 90: 445–454, 1977b.PubMedCrossRefGoogle Scholar
  84. 84.
    Swift, H. Analytical microscopy of biological materials. In: (G. L. Weid, ed.), Introduction to Quantitative Cytometry, New York: Academic, 1966.Google Scholar
  85. 85.
    Tanke, H. J., Nieuwenhuis, A. B., Koper, G. J. M., Slats, J. C. M., and Ploem, J. S. Flow cytometry of human reticulocytes based on RNA fluorescence. Cytometry, 1: 313–320, 1981.PubMedCrossRefGoogle Scholar
  86. 86.
    Taylor, I. W. and Milthorpe, B. K. An evaluation of DNA fluorochromes, staining techniques and analysis for flow cytometry. J. Histochem. Cytochem., 28: 1224–1232, 1980.PubMedGoogle Scholar
  87. 87.
    Thornthwaite, J. T., Sugarbaker, E. V., and Temple, W. J. Preparation of tissues for DNA flow cytometric analysis. Cytometry, 1: 229–237, 1980.PubMedCrossRefGoogle Scholar
  88. 88.
    Tobey, R. A. and Crissman, H. A. Unique techniques for cell cycle analysis utilizing mithramycin and flow microfluorometry. Exp. Cell Res., 93: 235–239, 1975.PubMedCrossRefGoogle Scholar
  89. 89.
    Tobey, R. A., Crissman, H. A., and Kraemer, P. M. A method for comparing effects of different synchronizing protocols on mammalian cell cycle traverse. J. Cell Biol., 54: 638–645, 1972.PubMedCrossRefGoogle Scholar
  90. 90.
    Trujillo, T. T. and Van Dilla, M. A. Adaptation of the fluorescent Feulgen reaction to cells in suspension for flow microfluorometry. Acta Cytol., 16: 26–30, 1972.PubMedGoogle Scholar
  91. 91.
    Van Dilla, M. A., Langlois, R. G., and Pinkel, D. Bacterial characterization by flow cytometry. Science, 220: 620–622, 1983.PubMedCrossRefGoogle Scholar
  92. 92.
    Van Dilla, M. A., Trujillo, T. T., Mullaney, P. F., and Coulter, J. R. Cell microfluorometry: A method for rapid fluorescence measurement. Science, 263: 1213–1214, 1969.CrossRefGoogle Scholar
  93. 93.
    Vindelov, L. L., Christensen, I. J., Jensen, G., and Nissen, N. I. Standardization of high resolution flow cytometric DNA analysis by the simultaneous use of chicken and trout red blood cells as internal reference standards. Cytometry, 3: 328–331, 1983.PubMedCrossRefGoogle Scholar
  94. 94.
    Vindelov, L. L., Christensen, I. J., and Nissen, N. I. A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry, 3: 323–327, 1983.PubMedCrossRefGoogle Scholar
  95. 95.
    Visser, J. W. M. Vital staining of hemopoietic cells with the fluorescent bis-benzimidazole derivatives Hoechst 33342 and 33258. In: (O. D. Laerum, T. Lindmo, and E. Thorud, eds.), Flow Cytometry IV, Bergen, Norway: Universitetsforlaget, 1979.Google Scholar
  96. 96.
    Visser, J. W. M., Bol, S. J. L., and Van den Engh, G. J. Characterization and enrichment of murine hemopoietic stem cells by fluorescence activated cell sorting. Exp. Hematol., 9: 644–655, 1981.PubMedGoogle Scholar
  97. 97.
    Wallen, C. A., Higashikubo, R., and Dethlefsen, L. A. Comparison of two flow cytometric assays for cellular RNA-acridine orange and propidium iodide. Cytometry, 3: 155–160, 1982.PubMedCrossRefGoogle Scholar
  98. 98.
    Ward, D. C., Reich, E., and Goldberg, I. H. Base specificity in the interaction of polynucleotides with antibiotic drugs. Science, 149: 1259–1263, 1965.PubMedCrossRefGoogle Scholar
  99. 99.
    Waring, M. Variation of the supercoils in closed circular DNA by binding of antibiotics and drugs: Evidence for molecular models involving intercalation. J. Mol. Biol., 54: 247–279, 1970.PubMedCrossRefGoogle Scholar
  100. 100.
    Zante, J., Schumann, J., Barlogie, B., Gohde, W., and Buchner, Th. Preparation and staining procedures for specific and rapid analysis of DNA distributions, In: (W. Gohde, J. Schumann, and Th. Bucher, eds.), Pulse Cytophotometry, Ghent: European Press, 1976.Google Scholar

Copyright information

© The Humana Press Inc. 1987

Authors and Affiliations

  • Harry A. Crissman
    • 1
  • John A. Steinkamp
    • 2
  1. 1.Life Sciences DivisionLos Alamos National LaboratoryLos Alamos
  2. 2.Life Sciences DivisionLos Alamos National LaboratoryLos Alamos

Personalised recommendations