Advertisement

Cell Synchrony Techniques

A Comparison of Methods
  • David J. Grdina
  • Marvin L. Meistrich
  • Raymond E. Meyn
  • Tod S. Johnson
  • R. Allen White
Protocol
Part of the Biological Methods book series (BM)

Abstract

With the development of the technique of autoradiography by Howard and Pelc (16), the mammalian cell cycle has become a topic of considerable interest and study. To facilitate this effort, investigators have directed their attention to the development of techniques for use in obtaining cell populations enriched in selected phases of the cell cycle. The technique of mitotic selection (35) described by Terasima and Tolmach in 1961 is one such approach that has enjoyed widespread use and success. By taking advantage of the property of cells from certain cell lines to detach from the surface of culture vessels during mitosis, cell populations enriched in the mitotic phase could be collected through a gentle shaking process. These cells then progress through the cell cycle in a synchronous manner. The major limitation of this procedure, however, is that it is applicable only to selected cell lines that grow in vitro.

Keywords

Transit Time Chinese Hamster Ovary Cell Mitotic Cell Cell Progression Centrifugal Elutriation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anderson, E. C., Bell, G. I., Peterson, D. F., and Tobey, R. A. Cell growth and division. IV. Determination of volume growth rate and division probability. Biophys. J., 9: 246–263, 1969.PubMedCrossRefGoogle Scholar
  2. 2.
    Aqad, S. R., Fox, M, and Winstanley, D. The use of ficoll gradient centrifugation to produce synchrous mouse lymphoma cells. Biochem. Biophys. Res. Comm., 37: 551–558, 1969.CrossRefGoogle Scholar
  3. 3.
    Arndt-Jovin, D. J. and Jovin, T. M. Analysis and sorting of living cells according to deoxyibonucleic acid content. J. Histochem. Cytochem., 25: 585–589, 1977.PubMedGoogle Scholar
  4. 4.
    Barlogie, B., Spitzer, C., Hart, J. S., Johnston, D. A., Buchner, T., Schumann, J., and Drewinko, B. DNA histogram analysis of human haemopoietic cells. Blood, 48: 245–258, 1976.PubMedGoogle Scholar
  5. 5.
    Beck, H. P. A new analytical method for determining duration of phases, rates of DNA synthesis and degree of synchronization from flow cytometric data on synchronized cell populations. Cell Tissue Kinet., 11: 139–148, 1978.PubMedGoogle Scholar
  6. 6.
    Bootsma, D., Budke, L., and Vos, O. Studies on synchronous division of tissue culture cells initiated by excess thymidine. Exp. Cell Res., 33: 301–309, 1964.PubMedCrossRefGoogle Scholar
  7. 7.
    Chandler, J. D. Quantum chemistry program exchange. Program 307, Indiana University, Evansville, Ind.Google Scholar
  8. 8.
    Dean, P. N. Data analysis in cell kinetic research. In: (J. W. Gray and Z. Darzynkiewicz, eds.), Techniques in Cell Cycle Analysis, New Jersey: Humana 1986.Google Scholar
  9. 9.
    Flow Cytometry and Sorting, (M. Melamed, P. Mullaney, and M. Mendelsohn, eds.) New York: John Wiley, 1979.Google Scholar
  10. 10.
    Glick, D., von Redlich, D., Yuhos, E. T., and McEwen, C. R. Separation of mast cells by centrifugal elutriation. Exp. Cell Res., 65: 23–26, 1979.CrossRefGoogle Scholar
  11. 11.
    Grabske, R. J. Separating cell populations by elutriation. Fractions, 1: 1–8, 1978.Google Scholar
  12. 12.
    Gray, J. W. Cell-cycle analysis of perturbed cell population. Computer simulation of sequential DNA distribution. Cell Tissue Kinet., 9: 499–516, 1976.PubMedGoogle Scholar
  13. 13.
    Gray, J. W., Dolbeare, F., Pallavicini, M., and Vanderlaan, M. Flow cytokinetics. In: (J. W. Gray and Z. Darzynkiewicz, eds.) Techniques in Cell Cycle Analysis. New Jersey: Humana 1986.Google Scholar
  14. 14.
    Grdina, D. J., Meistrich, M. L., Meyn, R. E., Johnson, T. S., and White, R. A. Cell synchrony techniques. I. A comparison of methods. Cell Tisue Kinet., 17: 223–236, 1984.Google Scholar
  15. 15.
    Hahn, G. M. State vector description of the proliferation of mammalian cells in tissue culture. I. Exponential growth. Biophys., 6: 275–290, 1966.CrossRefGoogle Scholar
  16. 16.
    Howard, A. and Pelc, S. R. Synthesis of deoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage. Heredity (suppl.), 6: 261–273, 1953.Google Scholar
  17. 17.
    Johnston, D. A., White, R. A., and Barlogie, B. Automatic processing and interpretation of DNA distributions: comparison of several techniques. Comp. Biomed. Res., 11: 393–404, 1978.CrossRefGoogle Scholar
  18. 18.
    Keng, P. C., Li, C. K. N., and Wheeler, K. T. Characterization of the separation properties of the Beckman elutriator system. Cell Biophys., 3: 41–56, 1981.PubMedCrossRefGoogle Scholar
  19. 19.
    MacDonald, H. R. and Miller, R. C. Synchronization of mouse L-cells by a velocity sedimentation technique. Biophys. J., 10: 834–842, 1970.PubMedCrossRefGoogle Scholar
  20. 20.
    Macdonald, P. D. M. Statistical inference from the fraction labelled mitoses curve. Biometrika, 57: 489–511, 1970.CrossRefGoogle Scholar
  21. 21.
    Macdonald, P. D. M. Age distributions in the general cell kinetic model. In: (A.-J. Valleron and P. D. M. Macdonald, eds.), Biomathematics and Cell Kinetics, Amsterdam: Elsevier/North-Holland Biomedical Press, 1978.Google Scholar
  22. 22.
    Marquardt, D. W. and Snee, R. D. Ridge regression in practice. Amer. Statistician, 29: 3–30, 1975.CrossRefGoogle Scholar
  23. 23.
    Meistrich, M. L., Meyn, R. E., and Barlogie, B. Synchronization of mouse L-P59 cells by centrifugal elutriation separation. Exp. Cell Res., 105: 169–177, 1977.PubMedCrossRefGoogle Scholar
  24. 24.
    Meistrich, M. L. Experimental factors involved in separation by centrifugal elutriation. In: (T. G. Pretlow and T. P. Pretlow, eds.), Cell Separation: Methods and Selected Applications, vol. 2, Florida: Academic, 1983.Google Scholar
  25. 25.
    Meyn, R. E., Hewitt, R. R., and Humphrey, R. M. Evaluation of S phase synchronization by analysis of DNA replication in S-bromodeoxyuridine. In: (D. M. Prescott, ed.), Methods in Cell Biology, vol. IX, San Francisco: Academic, 1975.Google Scholar
  26. 26.
    Meyn, R. E., Meistrich, M. L., and White, R. A. Cycle-dependent anticancer drug cytotoxicity in mammalian cells synchronized by centrifugal elutriation. J. Natl. Cancer Inst., 64: 1215–1219, 1980.PubMedGoogle Scholar
  27. 27.
    Miller, R. G. and Phillips, R. A. Separation of cells by velocity sedimentation. J. Cell. Physiol., 73: 191–202, 1967.CrossRefGoogle Scholar
  28. 28.
    Morris, N. R., Cramer, J. W., and Reno, D. A simple method for concentration of cells in the DNA synthetic period of the mitotic cycle. Exp. Cell. Res., 48: 216–218, 1967.PubMedCrossRefGoogle Scholar
  29. 29.
    Rajewsky, M. F. Synchronization in vivo: Kinetics of a malignant cell system following temporary inhibition of DNA synthesis with hydroyurea. Exp. Cell Res., 60: 269–276, 1970.PubMedCrossRefGoogle Scholar
  30. 30.
    Romsdahl, M. M. Synchronization of human cell lines with colcemid. Exp. Cell Res., 50: 463–467, 1968.CrossRefGoogle Scholar
  31. 31.
    Roti Roti, J. L. and Dethlefsen, L. A. Matrix simulation of duodenal crypt cell kinetics. I. The steady state. Cell Tissue Kinet., 8: 321–351, 1975.PubMedGoogle Scholar
  32. 32.
    Sinclair, R. and Bishop, A. H. L. Synchronous culture of strain-L mouse cells. Nature (Lond.), 205: 1272–1273, 1965.CrossRefGoogle Scholar
  33. 33.
    Sinclair, W. K. Hydroxyurea: Effects on Chinese hamster cells grown in culture. Cancer Res., 27: 297–308, 1967.PubMedGoogle Scholar
  34. 34.
    Stearns, B., Losee, K. A., and Bernsterin, J. Hydroxyurea. A new type of potential antitumor agent. J. Med. Chem., 6: 201, 1963.PubMedCrossRefGoogle Scholar
  35. 35.
    Terasima, T. and Tolmach, L. J. Changes in X-ray sensitivity of HeLa cells during the division cycle. Nature, 190: 1210–1211, 1961.PubMedCrossRefGoogle Scholar
  36. 36.
    Thames, H. D. and White, R. A. State-vector models of the cell cycle. I. Parametrization and fits to labeled mitoses data. J. Theor. Biol., 67: 733–756, 1977.PubMedCrossRefGoogle Scholar
  37. 37.
    Tobey, T. A. and Ley, K. D. Regulation of initiation of DNA synthesis in Chinese hamster cells. I. Production of a stable, reversible G1-arrested population in suspension culture. J. Cell Biol., 46: 151–157, 1970.PubMedCrossRefGoogle Scholar
  38. 38.
    White, R. A., Grdina, D. J., Meistrich, M. L., Meyn, R. E., and Johnson, T. S. Comparison of cell synchrony techniques II. Cell Tissue Kinet., 17: 237–245, 1984.PubMedGoogle Scholar
  39. 39.
    Yen, A., Fried, J., Kitahara, T., Strife, A., and Clarkson, B. D. The kinetic significance of cell size. I. Variation of cell cycle parameters with size measured at mitosis. Exp. Cell Res., 95: 295–302, 1975.PubMedCrossRefGoogle Scholar
  40. 40.
    Zeitz, D. S. FPI Analysis. I. Theoretical outline of a new method to analyze time sequences of DNA histograms. Cell Tissue Kinet., 13: 461–471, 1980.Google Scholar

Copyright information

© The Humana Press Inc. 1987

Authors and Affiliations

  • David J. Grdina
    • 1
  • Marvin L. Meistrich
    • 1
  • Raymond E. Meyn
    • 1
  • Tod S. Johnson
    • 1
  • R. Allen White
    • 2
  1. 1.Division of Biological and Medical ResearchArgonne National LaboratoryArgonne
  2. 2.Department of BiomathematicsUniversity of TexasHouston

Personalised recommendations