Autoradiographic Techniques for Measurement of the Labeling Index

  • Linda Simpson-Herren
Part of the Biological Methods book series (BM)


Autoradiography is a technique for visualization of radioactive material within an object by registering the charged particles emitted by disintegration of radioactive atoms, and was used by Howard and Pelc to demonstrate the incorporation of 32P into “resting” cells of Vicia faba roots (37) and to define the principal phases of the inter-mitotic period (38). The value of autoradiography as a technique for kinetic studies increased with the synthesis of tritiated thymidine, a specific precursor of DNA, by Taylor et al. (79). High-resolution autoradiography combined with a specific precursor of DNA made feasible identification of cells, initially in S-phase, as they progressed through the cell cycle. With these techniques, Quastler and Sherman (60) performed the first in vivo analysis of cell cycle traverse rates in mouse epithelium.


Photographic Emulsion Label Index Tritiated Thymidine Silver Deposit Label Precursor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Allison, D., Bose, K., Ridolpho, P., and Meyne, J. Lightly [3H]-thymidine-labeled bone marrow cells are in G1-G2. Proc. 8th Ann. Meeting of the Cell Kinetics Society. Cell Tissue Kinet., 17: 669, 1984.Google Scholar
  2. 2.
    Allison, D. C., Yuhas, J. M., Ridolpho, P. F., Anderson, S. L., and Johnson, T. S. Cytophotometric measurement of the cellular DNA content of [3H] thymidine-labelled spheroids. Cell Tissue Kinet., 16: 237–246, 1983.PubMedGoogle Scholar
  3. 3.
    Amano, M. and Everett, N. B. Preferential labeling of rat lymphocytes with a rapid rate of turnover by tritiated deoxycytidine. Cell Tissue Kinet., 9: 167–177, 1976.PubMedGoogle Scholar
  4. 4.
    Amano, M., Messier, B., and Leblond, C. P. Specificity of labelled thymidine as a deoxyribonucleic acid precuror in radioautography. J. Histochem. Cytochem., 7: 153–155, 1959.PubMedGoogle Scholar
  5. 5.
    Barendsen, G. W., Roelse, H., Hermens, A. F., Madhuizen, H. T., van Peperzeel, H. A., and Rutgers, D. H. Clonogenic capacity of proliferating and non-proliferating cells of a transplantable rat rhabdo-myosarcoma in relation to its radiosensitivity. J. Natl. Cancer Inst., 51: 1521–1526, 1973.PubMedGoogle Scholar
  6. 6.
    Baserga, R. and Kisielaski, W. E. Comparative study of the kinetics of cellular proliferation in normal and tumorous tissues with use of tritiated thymidine. J. Natl. Cancer Inst., 28: 331–339, 1962.PubMedGoogle Scholar
  7. 7.
    Baserga, R. and Malamud, D. Autoradiography. New York: Harper and Row, 1969.Google Scholar
  8. 8.
    Beck, H.-P. Radiotoxicity of incorporated [3H] thymidine as studied by autoradiography and flow cytometry. Cell Tissue Kinet., 14: 163–177, 1981.PubMedGoogle Scholar
  9. 9.
    Beck, H.-P. Radiotoxicity of incorporated [3H] thymidine. Cell Tissue Kinet., 15: 469–472, 1982.PubMedGoogle Scholar
  10. 10.
    Bertalanffy, F. D. and Lau, C. Rates of cell division of transplantable malignant tumors. Cancer Res., 22: 627–631, 1962.PubMedGoogle Scholar
  11. 11.
    Braunschweiger, P. G., Poulakos, L., and Schiffer, L. M. In vitro labeling and gold activation autoradiography for determination of labeling index and DNA synthesis times and solid tumors. Cancer Res., 36: 1748–1753, 1976.PubMedGoogle Scholar
  12. 12.
    Bresciani, F. Effect of ovarian hormones on duration of DNA synthesis in cells of the C3H mouse mammary gland. Exp. Cell Res., 38: 13–32, 1965.PubMedCrossRefGoogle Scholar
  13. 13.
    Bryant, T. R. Hydrolysis in Feulgen autoradiography. I. Loss of label from S-period nuclei and its subsequent association with non-S chromatin. Exp. Cell Res., 56: 127–133, 1969.PubMedCrossRefGoogle Scholar
  14. 14.
    Burki, J. H., Bunker, S., Ritter, M., and Cleaver, J. E. DNA damage from incorporated radioisotopes: Influence of the 3H location in the cell. Radiat. Res., 62: 299–312, 1975.PubMedCrossRefGoogle Scholar
  15. 15.
    Chan, P. C., Lisco, E., Lisco, H., and Adelstein, S. J. The radiotoxic-ity of iodine-125 in mammalian cells. II. A comparative study on cell survival and cytogenetic resonses to 125IUdR, 131IUdR and 3HTdR. Radiat. Res., 67: 332–343, 1976.PubMedCrossRefGoogle Scholar
  16. 16.
    Clausen, O. P. F., Thorud, E., and Bolund, L. DNA synthesis in mouse epidermis. Virchows Arch. (Cell Pathol.), 34: 1–11, 1980.CrossRefGoogle Scholar
  17. 17.
    Cleaver, J. E. Thymidine Metabolism and Cell Kinetics (Appendix). Amsterdam: North-Holland, 1967.Google Scholar
  18. 18.
    Dendy, P. P. and Smith, C. L. Effects on DNA synthesis of localized irradiation of cells in tissue culture by (i) a U. V. microbeam and (ii) an a-particle microbeam. Proc. Roy. Soc. (B), 160: 328–344, 1964.CrossRefGoogle Scholar
  19. 19.
    Dendy, P. P., Smith, C. L., and Wildy, P. A pool size problem associated with the use of tritiated thymidine. Nature, 294: 886–887, 1962.Google Scholar
  20. 20.
    Dethlefsen, L. A. 3H-5-Iodo-2′-deoxyuridine toxicity. Cell Tissue Kinet., 7: 213–222, 1974.PubMedGoogle Scholar
  21. 21.
    Diab, I. M. and Roth, L. J. Autoradiographic differentiation of free bound, pure, and impure thymidine 3H. Stain Technol., 45: 285–291, 1970.PubMedGoogle Scholar
  22. 22.
    Durie, B. B. M. and Salmon, W. E. High speed scintillation autoradiography. Science, 190: 1093–1095, 1975.PubMedCrossRefGoogle Scholar
  23. 23.
    Eisen, M. A criterion for classifying radioactive cells. Int. J. Appl. Radiat. Isot., 27: 695–697, 1976.PubMedCrossRefGoogle Scholar
  24. 24.
    England, J. M., Rogers, A. W., and Miller, R. G. The identification of labelled structures and autoradiographs. Nature, 242: 612–613, 1973.PubMedCrossRefGoogle Scholar
  25. 25.
    Evans, E. A. Purity and stability of radiochemical tracers in auto-radiography. J. Microsc, 96: 165–180, 1971.Google Scholar
  26. 26.
    Evans, E. A. Autoradiography with tritium. In: Tritium and Its Compounds. New York: John Wiley, 1974.Google Scholar
  27. 27.
    Evans, E. A., Sheppard, H. C., and Turner, J. C. Validity of tritium tracers. Stability of tritium atoms in purines, pyrimidines, nucleosides and nucleotides. J. Labelled Compounds, VI: 76–87, 1970.CrossRefGoogle Scholar
  28. 28.
    Forsdyke, D. R. Application of the isotope-dilution principle to the analysis of factors affecting the incorporation of [3H] uridine and [3H] cytidine into cultured lymphocytes. Biochem. J., 125: 721–732, 1971.PubMedGoogle Scholar
  29. 29.
    Fox, B. W. and Prusoff, W. H. The comparative uptake of I125-labeled 5-iodo-2′-deoxyuridine and thymidine-H3 into tissues of mice bearing hepatoma-129. Cancer Res., 25: 234–240, 1965.PubMedGoogle Scholar
  30. 30.
    Gahan, P. B., ed. Autoradiography for Biologists. London: Academic, 1972.Google Scholar
  31. 31.
    Goldspink, D. F. and Goldberg, A. L. Problems in the use of [Me3H] thymidine for the measurement of DNA synthesis. Biochem. Biophys. Acta, 299: 521–532, 1973.PubMedGoogle Scholar
  32. 32.
    Gude, W. D. Autoradiographic Techniques. Englewood Cliffs: Prentice-Hall, 1968.Google Scholar
  33. 33.
    Hamatani, K. and Amano, M. Different labeling patterns in mouse lymphoid tissues with [3H] deoxycytidine and [3H] thymidine. Cell Tissue Kinet., 13: 435–443, 1980.PubMedGoogle Scholar
  34. 34.
    Hamilton, E. and Dobbin, J. [3H] Thymidine labels less than half of the DNA synthesizing cells in the mouse tumor, carcinoma NT. Cell Tissue Kinet., 15: 405–411, 1982.PubMedGoogle Scholar
  35. 35.
    Helpap, B. and Dachselt, U. The pattern of lymphocytes in the thymus and spleen after labeling with 3H-thymidine and 3H-deoxycytidine. Virchows Arch. (Cell Path.), 28: 287–299, 1978.Google Scholar
  36. 36.
    Hirt, A. and Wagner, H. P. Nuclear corporation of radioactive DNA precursors and progression of cells through S. Cell Tissue Kinet., 8: 455–466, 1975.PubMedGoogle Scholar
  37. 37.
    Howard, A. and Pelc, S. R. Nuclear incorporation of P32 as demonstrated by autoradiographs. Exp. Cell Res., 2: 178–187, 1951.CrossRefGoogle Scholar
  38. 38.
    Howard, A. and Pelc, S. R. Synthesis of deoxyribonucleic acid in normal and irradiated cells and its relationship to chromosome breakage. Heredity (Suppl.), 6: 261–273, 1953.Google Scholar
  39. 39.
    Iversen, O. H. and Bjerknes, R. Kinetics of epidermal reaction to carcinogens. Oslo: Universitetsforlaget, 1963.Google Scholar
  40. 40.
    Kopriwa, B. M. Quantitative investigation of scintillator intensification for light and electron microscope radioautography. Histochemistry, 68: 265–279, 1980.PubMedCrossRefGoogle Scholar
  41. 41.
    Kopriwa, B. M. A comparison of various procedures for fine grain development in electron microscopic radioautography. Histochemistry, 44: 201–224, 1975.PubMedCrossRefGoogle Scholar
  42. 42.
    Lang, W., Muller, D., and Maurer, W. Prozentuale beteiligung von exogenem thymidin an der synthese von DNA-thymin in geweben der maus und Hela zellen. Exp. Cell Res., 49: 558–571, 1968.PubMedCrossRefGoogle Scholar
  43. 43.
    Langager, J. M., Howard, G. A., and Baylink, D. J. An improved technique for rapid autoradiography of cells and tissue sections. Histochemistry, 75: 523–531, 1982.PubMedGoogle Scholar
  44. 44.
    Lloyd, H. H. and Simpson-Herren, L. Tumor dependence of observed thymidine index as a function of emulsion exposure. Cancer Res., 43: 1138–1144, 1983.PubMedGoogle Scholar
  45. 45.
    Marques-Pereira, J. P. and Leblond, C. P. Mitoses and differentiation in the stratified epithelium of the rat oesophagus. Am. J. Anat., 117: 73–89, 1965.PubMedCrossRefGoogle Scholar
  46. 46.
    Maurer, H. R. Potential pitfalls of [3H] thymidine techniques to measure cell proliferation. Cell Tissue Kinet., 14: 111–120, 1981.PubMedGoogle Scholar
  47. 47.
    Mendelsohn, M. L. Autoradiographic analysis of cell proliferation in spontaneous breast cancer of C3H mouse. II. Growth and survival of cells labeled with tritiated thymidine. J. Nat. Cancer Inst., 25: 485–500, 1960.PubMedGoogle Scholar
  48. 48.
    Mendelsohn, M. L. Autoradiographic analysis of cell proliferation in spontaneous breast cancer of C3H mouse. III. The growth fraction. J. Nat. Cancer Inst., 28: 1015–1029, 1962.PubMedGoogle Scholar
  49. 49.
    Mendelsohn, M. L., Dohan, Jr., C. F., and Moorse, Jr., H. A., Autoradiographic analysis of cell proliferation in spontaneous breast cancer of C3H mouse. I. Typical cell cycle and timing of DNA synthesis. J. Nat. Cancer Inst., 25: 477–484, 1960.PubMedGoogle Scholar
  50. 50.
    Meyer, J. S. and Connor, R. E. In vitro labeling of solid tissues with tritiated thymidine for autoradiographic detection of S-phase nuclei. Stain Technol., 52: 185–195, 1977.PubMedGoogle Scholar
  51. 51.
    Meyer, J. S. and Facher, R. Thymidine labeling index of human breast carcinoma. Cancer, 39: 2524–2532, 1977.PubMedCrossRefGoogle Scholar
  52. 52.
    Nicolini, C. The discrete phases of the cell cycle: Autoradiographic, physical and chemical evidences. J. Nat. Cancer Inst., 55(4): 821–826, 1975.PubMedGoogle Scholar
  53. 53.
    Odeblad, E. Artifacts in autoradiography. Acta Radiol., 39: 192–204, 1953.PubMedCrossRefGoogle Scholar
  54. 54.
    Olszewska, M. J., Bilecka, A., Kuran, H., and Marciniak, K. Application and efficiency of scintillation for autoradiography of plant cells. Microscop. Acta, 85: 133–139, 1981.Google Scholar
  55. 55.
    Panayi, G. S. and Neill, W. A. Scintillation autoradiography-a rapid technique. J. Immunol. Meth., 2: 115–117, 1972.CrossRefGoogle Scholar
  56. 56.
    Pelc, S. R. Incorporation of labelled precursors of DNA in non-dividing cells. In: (L. F. Lamerton and R. J. M. Fry, eds.), Cell Proliferation, Philadelphia: F. A. Davis, 1963.Google Scholar
  57. 57.
    Perez, A. G., Kim, J. H., Gelbard, A. S., and Djordjevic, B. Altered incorporation of nucleic acid precursors by mycoplasma-infected mammalian cells in culture. Exp. Cell Res., 70: 301–310, 1972.PubMedCrossRefGoogle Scholar
  58. 58.
    Pilgrim, C., Erb, W., and Maurer, W. Diurnal fluctuations in the members of DNA synthesizing nuclei in various mouse tissues. Nature, 199: 863–865, 1963.PubMedCrossRefGoogle Scholar
  59. 59.
    Quastler, H. The analysis of cell population kinetics. In: (L. F. Lamerton and R. J. Fry, eds.), Cell Proliferation, Philadelphia: F. A. Davis, 1963.Google Scholar
  60. 60.
    Quastler, H. and Sherman, G. G. Cell population kinetics in the intestinal epithelium of the mouse. Exp. Cell Res., 17: 420–438, 1959.PubMedCrossRefGoogle Scholar
  61. 61.
    Reisken, A. B. and Mendelsohn, M. L. A comparison of the cell cycle in induced carcinomas and their normal counterpart. Cancer Res., 24: 1131–1136, 1964.Google Scholar
  62. 62.
    Riccardi, A., Mazzini, G., Montecucco, C., Cresci, R., Traversi, E., Berzuini, C., and Ascari, E. Sequential vincristine, arabinosylcytosine and adriamycin in acute leukemia: Cytologic and cytokinetic studies. Cytometry, 3: 104–109, 1982.PubMedCrossRefGoogle Scholar
  63. 63.
    Rogers, A. W. Techniques of Autoradiography. Amsterdam: Elsevier/North Holland Biomedical, 1979.Google Scholar
  64. 64.
    Rogers, A. W. Scintillation autoradiography at the light microscope level: A review. Histochem. J., 13: 173–186, 1981.PubMedCrossRefGoogle Scholar
  65. 65.
    Sawicki, W., Blaton, O., and Rowinski, J. Correction of autoradiographic grain count in respect to precisely calculated background. Histochemie, 26: 67–73, 1971.PubMedCrossRefGoogle Scholar
  66. 66.
    Sawicki, W. Ostrowski, K., and Platkowska, E. High-speed autoradiography of 3H-thymidine-labelled nuclei. Histochemistry, 52: 341–347, 1977.PubMedCrossRefGoogle Scholar
  67. 67.
    Schoenfeld, D. and Kallman, R. F. Determining the labeling index in autoradiography. Cell Tissue Kinet., 13: 339–347, 1980.PubMedGoogle Scholar
  68. 68.
    Schultze, B. In: (A. W. Pollister, ed.), Physical Techniques in Biological Research. New York: Academic, 1969.Google Scholar
  69. 69.
    Shackney, S. E. The radiographic transfer function and its implications for radioautographic methodology. J. Nat. Cancer Inst., 55: 811–820, 1975.PubMedGoogle Scholar
  70. 70.
    Shackney, S. E. On the discreteness of the phases of the cell cycle. J. Nat. Cancer Inst., 55: 826–829, 1975.Google Scholar
  71. 71.
    Shackney, S. E. and Ritch, P. S. Percent labeled mitosis curve analysis In: (J. W. Gray and Z. Darzynkiewicz, eds.), Techniques in Cell Cycle Analysis, New Jersey: Humana, 1986.Google Scholar
  72. 72.
    Simpson-Herren, L., Sanford, A. H., and Holmquist, J. P. Cell population kinetics of transplanted and metastatic Lewis lung carcinoma. Cell Tissue Kinet., 7: 349–361, 1974.PubMedGoogle Scholar
  73. 73.
    Simpson-Herren, L., Sanford, A. H., Holmquist, J. P., Springer, T. A., and Lloyd, H. H. Ambiguity of the thymidine index. Cancer Res., 36: 4705–4709, 1976.PubMedGoogle Scholar
  74. 74.
    Smets, L. A. Discrepancies between precursor uptake and DNA synthesis in mammalian cells. J. Cell Physiol., 74: 63–66, 1969.PubMedCrossRefGoogle Scholar
  75. 75.
    Smets, L. A. and Brohee, H. A hidden pool effect of thymidine incorporation in HeLa Cells. Int. J. Radiat. Biol., 17: 93–96, 1970.CrossRefGoogle Scholar
  76. 76.
    Steel, G. G. Growth Kinetics of Tumours. Oxford: Clarendon Press, 1977.Google Scholar
  77. 77.
    Stillstrom, J. Grain count corrections in autoradiography. Int. J. Appl. Radiat. Isot., 14: 113–118, 1963.PubMedCrossRefGoogle Scholar
  78. 78.
    Tannock, I. F. The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumor. Br. J. Cancer, 22: 258–273, 1968.PubMedCrossRefGoogle Scholar
  79. 79.
    Taylor, J. A., Woods, P. S., and Hughes, W. L. The organization and duplication of chromosomes as revealed by autoradiographic studies using tritium-labeled thymidine. Proc. Nat. Acad. Sci. USA, 43: 122–128, 1957.PubMedCrossRefGoogle Scholar
  80. 80.
    Woodcock, C. L. F., D’Amico-Martel, A., Mclnnis, C. J., and Annun-ziato, A. T. How effective is “high-speed” autoradiography? J. Microsc, 117: 417–423, 1979.PubMedGoogle Scholar

Copyright information

© The Humana Press Inc. 1987

Authors and Affiliations

  • Linda Simpson-Herren
    • 1
  1. 1.Biochemistry Research DivisionSouthern Research InstituteBirmingham

Personalised recommendations