Advertisement

Major and Modified Nucleosides, RNA, and DNA

  • Charles W. Gehrke
  • Kenneth C. Kuo
Protocol
Part of the Biological Methods book series (BM)

Abstract

Most analytical chemists are well aware of the rapid rate of development of high-performance liquid chromatography (HPLC) over the past 5 years. A number of articles have been published in Analytical Chemistry on different topics in HPLC and many papers appear in the chromatographic journals. Some books also have been published covering this subject. HPLC has proved to be a very effective, broadly applicable chromatographic method for the separation and analysis of complex molecules in fields as diverse as biochemistry and environmental, pharmaceutical, medical, and polymer chemistry. HPLC is now having a major impact on the clinical and research aspects of medical biochemistry. Although the contributions of HPLC to other disciplines generally complements gas-liquid chromatography, this method is destined to play a much greater role in medical and biochemical research. This is because many of the biomolecules, owing to their molecular complexity and size, are thermally unstable or nonvolatile, preventing or complicating an analysis by GC. A major factor contributing to the powerful advances in biomedical liquid chromatography is the development of reversed-phase high-performance liquid chromatography (RP-HPLC) using n-alkyl and phenyl chemically bonded substrates.

Keywords

Ammonium Acetate Buffer Excellent Precision Modify Nucleoside Isocratic Separation Isopentenyl Adenosine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Borek, E., Transfer RNAs as regulatory molecules: an assessment after a decade, in Control Proesses in Neoplasia, Mehlman, M., and Hanson, W. R., eds., Academic Press, New York, 1974, p. 147–161.Google Scholar
  2. 2.
    Rich, A., and RajBhandary, U. L., Ann. Rev. Biochem. 45, 805 (1976).CrossRefGoogle Scholar
  3. 3.
    Sharma, O. K., Kerr, S. J., Lipshitz-Wiesner, R., and Borek, E., Fed Proc. 30, 167 (1971).Google Scholar
  4. 4.
    Turkington, R. W., J. Biol. Chem. 244, 5140 (1969).Google Scholar
  5. 5.
    Borek, E., Cancer Res. 31, 596 (1971).Google Scholar
  6. 6.
    Starr, J. L., Biochim. Biophys. Acta 61, 676 (1962).Google Scholar
  7. 7.
    Biswas, B. A., Edmonds, M., and Abrams, R., Biochem. Biophys. Res. Commun. 6, 146 (1961).CrossRefGoogle Scholar
  8. 8.
    Fleissner, E., and Borek, E., Biochem. 2, 560 (1963).CrossRefGoogle Scholar
  9. 9.
    Srinivasan, P. R., and Borek, E., Proc. Natl. Acad. Sci. USA 49, 529 (1963).CrossRefGoogle Scholar
  10. 10.
    Mandel, L. R., and Borek, E., Biochem. 2, 560 (1963).CrossRefGoogle Scholar
  11. 11.
    Weissman, D., Bromberg, P. A., and Guttman, A. B., J. Biol. Chem. 224, 407 (1957).Google Scholar
  12. 12.
    Adams, W. S., Davis, F., and Nakatani, M., Am. J. Med. 28, 726 (1960).CrossRefGoogle Scholar
  13. 13.
    Park, R. W., Holland, J. F., and Jenkins, A., Cancer Res. 22, 469 (1962).Google Scholar
  14. 14.
    Waalkes, T. P., Gehrke, C. W., Bleyer, W. A., Zumwalt, R. W., Olweny, C. L. M., Kuo, K. C., Lakings, D. B., and Jacobs, S. A., Cancer Chemotherapy Reports 59, 721 (1975).Google Scholar
  15. 15.
    Waalkes, T. P., Gehrke, C. W., Zumwalt, R. W., Chang, S. Y., Lakings, D. B., Tormey, D. C., Ahman, D. L., and Moertel, C. G., Cancer 36, 390 (1975).CrossRefGoogle Scholar
  16. 16.
    Mandel, L. R., Srinivasan, P. R., and Borek, E., Nature (London) 209, 586 (1966).CrossRefGoogle Scholar
  17. 17.
    McFarlane, E. S., and Shaw, G. J., Can. J. Microbiol. 14, 185 (1968).CrossRefGoogle Scholar
  18. 18.
    Dlugajcyk, A., and Eiler, J. J., Proc. Soc. Exp. Biol. Med. 123, 453 (1966).CrossRefGoogle Scholar
  19. 19.
    Borek, E., Baliga, B. S., Gehrke, C. W., Kuo, K. C., Belman, S., Troll, W., and Waalkes, T. P., High Turnover Rate of tRNA in Tumor Tissue, Cancer Res. 37, 398 (1977).Google Scholar
  20. 20.
    Gehrke, C. W., Stalling, D. L., and Ruyle, C. D., Biochem. Biophys. Res. Commun. 28, 869 (1967).CrossRefGoogle Scholar
  21. 21.
    Gehrke, C. W., and Ruyle, C. D., J. Chromatogr. 61, 45 (1968).Google Scholar
  22. 22.
    Gehrke, C. W., and Lakings, D. B., J. Chromatogr. 61, 45 (1971).CrossRefGoogle Scholar
  23. 23.
    Lakings, D. B., and Gehrke, C. W., Clin. Chem. 18, 810 (1972).Google Scholar
  24. 24.
    Chang, S. Y., Lakings, D. B., Zumwalt, R. W., Gehrke, C. W., and Waalkes, T. P., J. Lab. Clin. Med. 83, 816 (1974).Google Scholar
  25. 25.
    Gehrke, C. W., and Patel, A. B., J. Chromatogr. 123, 335 (1976).CrossRefGoogle Scholar
  26. 26.
    Gehrke, C. W., and Patel, A. B., J. Chromatogr. 130, 103 (1977).CrossRefGoogle Scholar
  27. 27.
    Patel, A. B., and Gehrke, C. W., J. Chromatogr. 130, 115 (1977).CrossRefGoogle Scholar
  28. 28.
    Suits, R. D., and Gehrke, C. W., Reversed-phase liquid chromatographic separation of nucleic acid bases from DNA and RNA hydrolysates, 18th West Central States Biochemistry Conference (1975).Google Scholar
  29. 29.
    Hartwick, R. A., and Brown, P. R., J. Chromatogr. 126, 679 (1976).CrossRefGoogle Scholar
  30. 30.
    Gehrke, C. W., Kuo, K. C., and Zumwalt, R. W., J. Chromatogr. 188, 129 (1980).CrossRefGoogle Scholar
  31. 31.
    Uziel, M., Smith, L. H., and Taylor, S. A., Clin. Chem. 22, 1451 (1976).Google Scholar
  32. 32.
    Davis, G. E., Suits, R. D., Kuo, K. C., Gehrke, C. W., Waalkes, T. P., and Borek, E., Clin. Chem. 23, 1427 (1977).Google Scholar
  33. 33.
    Boeseken, J., Advan. Carbohydrate Chem. 4, 189 (1949).CrossRefGoogle Scholar
  34. 34.
    Borek, E., Waalkes, T. P., Gehrke, C. W., and Kuo, K. C., The dynamics of excretion of modified nucleosides by normal subjects and cancer patients, in preparation.Google Scholar
  35. 35.
    Agris, P. F., and Soil, D., The modified nucleosides in transfer RNA, in Nucleic Acid-Protein Recognition, H. Vogel, ed., Academic Press, New York, 1977, pp. 321–344.CrossRefGoogle Scholar
  36. 36.
    Clark, B. F. C., Prog. Nuc. Acid Res. Mol Biol. 20, 1 (1977).CrossRefGoogle Scholar
  37. 37.
    Rich, A., and Schimmel, P. R., Accts. Chem. Res. 10, 385 (1977).CrossRefGoogle Scholar
  38. 38.
    Kuchino, Y., and Borek, E., Similar patterns of tRNA structure and tRNA methyltransferases in embryonic and tumor tissue, in Onco-Developmental Gene Expression, Academic Press, New York, 1976.Google Scholar
  39. 39.
    Gehrke, C. W., Kuo, K. C., Davis, G. E., Suits, R. D., Waalkes, T. P., and Borek, E., J. Chromatogr. 150, 455 (1978).CrossRefGoogle Scholar
  40. 40.
    Kuo, K. C., Gehrke, C. W., McCune, R. A., Waalkes, T. P., and Borek, E., J. Chromatogr. Biomed. Appl. 145, 383 (1978).CrossRefGoogle Scholar
  41. 41.
    Gehrke, C. W., Kuo, K. C., Ehrlich, M., and McCune, R. A., Quantitative determination of major and modified deoxynucleosides in DNA, Nucleic Acids Res. 8, 4763 (1980).CrossRefGoogle Scholar
  42. 42.
    Davis, G. E., Gehrke, C. W., and Kuo, K. C., J. Chromatogr. 173, 281 (1979).CrossRefGoogle Scholar
  43. 43.
    Brown, P. R., and Hartwick, R., Serum Analysis for Nucleosides, CRC Press, L. Hammer, Ed., in press.Google Scholar

Copyright information

© The Humana Press, Inc. 1981

Authors and Affiliations

  • Charles W. Gehrke
    • 1
  • Kenneth C. Kuo
    • 1
  1. 1.Experiment Station Chemical LaboratoriesUniversity of MissouriColumbia

Personalised recommendations