Advertisement

Metal Carcinogenesis In Experimental Animals

  • Max Costa
Protocol
Part of the Biological Methods book series (BM)

Introduction

Numerous studies have demonstrated that cadmium, cobalt, chromium, and nickel are potent inducers of carcinomas and sarcomas in experimental animals. Other metal compounds that have induced tumors in experimental animals include beryllium, iron, lead, titanium, and zinc. However, the evidence that these latter metal compounds induce cancer is scattered and not very conclusive. The induction of localized tumors in experimental animals at the site of injection has been demonstrated following parenteral administration of the metals themselves, their soluble salts, and various insoluble metal compounds (oxides or sulfides). Comprehensive studies using various combinations of metal compounds have not yet been conducted, and it is therefore very difficult to assess whether specific metal compounds have greater or lower carcinogenic activity than the free metal itself. A possible exception to this situation is found with nickel. The carcinogenic activity of a number of nickel...

Keywords

Metal Compound Chromium Oxide Cadmium Chloride Carcinogenic Activity Nickel Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Osswald, H., and K. Goerttler, Arsenic-induced leukoses in mice after diaplacental and postnatal application. Verb. Dtsch. Ges. Path. 55: 289–293, 1971.Google Scholar
  2. 2.
    Milner, J. E., The effect of ingested arsenic on methylcholanthrene-induced skin tumors in mice. Arch. Environ. Health 18: 7–11, 1969.PubMedGoogle Scholar
  3. 3.
    Hueper, W. C., and W. W. Payne, Experimental studies in metal carcinogenesis. Chromium, nickel, iron, and arsenic. Arch. Environ. Health 5: 445–562, 1962.PubMedGoogle Scholar
  4. 4.
    Frost, D. V., Arsenicals in biology—retrospect and prospect. Fed. Proc. 26: 194–208, 1967.PubMedGoogle Scholar
  5. 5.
    Lucis, O. J., R. Lucis, and K. Aterman, Tumorigenesis by cadmium. Oncology 26: 53–67, 1972.PubMedCrossRefGoogle Scholar
  6. 6.
    Heath, J. C., M. Webb, and M. Caffrey, The interaction of carcinogenic metals with tissues and body fluids. Cobalt and horse serum. Brit. J. Cancer 23: 153–166, 1969.PubMedCrossRefGoogle Scholar
  7. 7.
    Reddy, J., D. Svoboda, D. Azarnoff, and R. Dawas, Cadmium-induced Leydig cell tumors of rat testis: Morphologic and cytochemical study. J. Nat. Cancer Inst. 51: 891–903, 1973.PubMedGoogle Scholar
  8. 8.
    Haddow, A., F. J. C. Roe, C. E. Dukes, and B. C. V. Mitchley, Cadmium neoplasia: Sarcomata at the site of injection of cadmium sulphate in rats and mice. Brit. J. Cancer 18: 667–673, 1964.PubMedCrossRefGoogle Scholar
  9. 9.
    Laskin, S., M. Kuschner, and R. T. Drew, Studies in pulmonary carcinogenesis. In: Inhalation carcinogenesis, eds. M. G. Hanna, Jr., Nettesheim, and J. R Gilbert, Washington, D.C., Atomic Energy Commission, 1970, pp. 321–351.Google Scholar
  10. 10.
    Kuschner, M., and S. Laskin, Experimental models in environmental carcinogenesis. Amer. J. Path. 64: 183–191, 1971.PubMedGoogle Scholar
  11. 11.
    Nettesheim, P., M. G. Hanna, Jr., D. G. Dohertz, R. F. Newell, and A. Hellman, Effect of calcium chromate dust, influenza virus, and 100 R whole-body x-radiation on lung tumor incidence in mice. J. Nat. Cancer Inst. 47: 1129–1144, 1971.PubMedGoogle Scholar
  12. 12.
    Vollmann, J., Tierexperimente mit intraossarem Arsen-, Chrom-, and Kobaltdepot. Schweiz. A. Allg. Path. Bakt. 2: 440–443, 1940.Google Scholar
  13. 13.
    Payne, W. W., Production of cancers in mice and rats by chromium compounds. Arch. Industri. Health 21: 530–535, 1960.Google Scholar
  14. 14.
    Roe, F. J. C, and R. L. Carter, Chromium carcinogenesis: Calcium chromate as a potent carcinogen for the subcutaneous tissues of the rat. Brit. J. Cancer 23; 172–176, 1969.PubMedCrossRefGoogle Scholar
  15. 15.
    Gilman, J. P. W., Metal carcinogenesis. II. A study on the carcinogenic activity of cobalt, copper, iron, and nickel compounds. Cancer Res. 22: 158–162, 1962.PubMedGoogle Scholar
  16. 16.
    Thomas, J. A., and J. P. Thiery, Production elective de liposarcoma chez les lapins par les oligoelements zinc et cobalt. Compt. Rendu. Hebd. Seanc. Acad. Sci. (Paris) 236: 1387, 1953.Google Scholar
  17. 17.
    Hueper, W. C., Experimental studies in metal carcinogenesis. IX. Pulmonary lesions in guinea pigs and rats exposed to prolonged inhalation of powdered metallic nickel. Arch. Path. 65: 600–607, 1958.Google Scholar
  18. 18.
    Toda, M., Experimental studies of occupational lung cancer. Bull. Tokyo Med. Dent. Univ. 9: 440–441, 1962.Google Scholar
  19. 19.
    Campbell, J. A., Lung tumors in mice and men. Brit. Med. J. 1: 179–183, 1943.PubMedCrossRefGoogle Scholar
  20. 20.
    Sunderman, F. W., Jr., Metastasizing pulmonary tumors in rats induced by the inhalation of nickel carbonyl. In: Lung Tumors in Animals, ed. L. Severi, Proc. of Third Quadrennial Conference on Cancer, Perugia, Italy. Perugia, Division of Cancer Research, 1966, pp. 551–564.Google Scholar
  21. 21.
    Gilman, J. P. W., M. R. Daniel, and P. K. Basrur, Observations of tissue selectivity in nickel tumorigenesis. Proc. Amer. Ass. Cancer Res. 7: 24, 1966.Google Scholar
  22. 22.
    Hebert, G. J., P. K. Basrur, and J. P. W. Gilman, Arginase activity in nickel sulfide-induced rat tumors. Cancer 25: 1134–1141, 1970.PubMedCrossRefGoogle Scholar
  23. 23.
    Jasmin, G., Effects of methandrostenolone on muscle carcinogenesis induced in rats by nickel sulphide. Brit, J. Cancer 17: 681–686, 1963.CrossRefGoogle Scholar
  24. 24.
    Heath, J. C, and M. R. Daniel, The production of malignant tumours by nickel in the rat. Brit. J. Cancer 18: 261–264, 1964.PubMedCrossRefGoogle Scholar
  25. 25.
    Webb, M., J. C. Heath, and T. Hopkins, Intranuclear distribution of the inducing metal in primary rhabdomyosarcomata induced in the rat by nickel, cobalt, and cadmium. Brit. J. Cancer 26: 274–278, 1972.PubMedCrossRefGoogle Scholar
  26. 26.
    Sunderman, F. W., Jr. Metal carcinogenesis. In: Chemical Diagnosis of Disease, eds., Brown, Mitchell, and Young. Elsevier, Amsterdam: Hemisphere 1975, 1–39.Google Scholar
  27. 27.
    Sunderman, F. W., Jr., and R. M. Maenza, Comparisons of carinogenicities of nickel compounds in rats. Res. Commun. Chem. Pathol. Pharmocol. 14: 319–330, 1976.Google Scholar
  28. 28.
    Jasmin, G., and J. L. Riopelle, Renal carcinomas and erythrocytosis in rats following intrarenal injection of nickel subsulfide. Lab. Invest. 35: 71–78, 1976.PubMedGoogle Scholar
  29. 29.
    Lau, T. J., R. L. Hackett, and F. W. Sunderman, Jr., The carcinogenicity of intravenous nickel carbonyl in rats. Cancer Res. 32: 2253–2258, 1972.PubMedGoogle Scholar
  30. 30.
    Maenza, R. M., A. M. Pradhan, and F. W. Sunderman, Jr., Rapid induction of sarcomas in rats by a combination of nickel sulfide and 3,4-benzpyrene. Cancer Res. 31: 2067–2071, 1971.PubMedGoogle Scholar
  31. 31.
    Kasprzak, K. S., L. Marchow, and J. Breborowicz, Pathological reactions in rat lungs following intratrachial injection of nickel subsulfide and 3,4-benzpyrene. Res. Commun. Chem. Path. Pharmacol. 6: 237–245, 1973.Google Scholar
  32. 32.
    Michalowksy, I., Die experimentelle Erzeugung einer teratoiden Neubildung der Hoden beim Hahn. Vorlaufige Mitteilung. Zentbl. Allg. Path. Anat. 38: 585–587, 1926.Google Scholar
  33. 33.
    Bresler, W. M., On the dynamics of blastomogenesis in the testis. Acta Unio Intern. Contra. Cancrum 20: 1501–1503, 1964.Google Scholar
  34. 34.
    Guthrie, J., and D. A. Guthrie, Embryonal carcinomas in Syrian hamsters after intratesticular inoculation of zinc chloride during seasonal testicular growth. Cancer Res. 34: 2612–2614, 1974.PubMedGoogle Scholar
  35. 35.
    Gunn, S. A., T. C. Gould, and W. A. D. Anderson, Effect of zinc on carcinogenesis by cadmium. Proc. Soc. Exp. Biol. Med. 115: 653–657, 1964.PubMedGoogle Scholar
  36. 36.
    Heath, J. C., M. R. Daniel, J. T. Dingle, and M. Webb, Cadmium as a carcinogen. Nature 193: 592–593, 1962.PubMedCrossRefGoogle Scholar
  37. 37.
    Haddow, A., F. J. C. Roe, and B. C. V. Mitchley, Induction of sarcomata in rabbits by intramuscular injection of iron-dextran (“Infer-on”). Brit. Med. J. 1: 1593–1594, 1964.PubMedCrossRefGoogle Scholar
  38. 38.
    Neukomm, S., Recherches sur le pouvoir cancerigene et co-cancerigene de diverses preparations a base de fer. Proc. Europ. Soc. Drug Toxicity 2: 174–177, 1969.Google Scholar
  39. 39.
    Langvad, E., Iron-dextran induction of distant tumors in mice. Int. J. Cancer 3: 415–423, 1968.PubMedCrossRefGoogle Scholar
  40. 40.
    Haddow, A., and E. S. Horning, On the carcinogenicity of an iron-dextran complex. J. Nat. Cancer Inst. 24: 109–147, 1960.PubMedGoogle Scholar
  41. 41.
    Zollinger, H. U., Durch chronische Bleivergiftung erzeugte Nieren-adenome und-carcinome bei Ratten und ihre Beziehungen zu den entsprechenden Neubildungen des Menschen. Virchows Arch. Path. Anat. 323: 694–710, 1953.CrossRefGoogle Scholar
  42. 42.
    Zawirska, B., and K. Medras, Morphology and biological activity of transplantable interstitioma testis induced with lead acetate. Arch. Immunol. Therap. Exp. 20: 243–256, 1972.Google Scholar
  43. 43.
    Gardner, L. U., and H. F. Heslington, Osteosarcoma from intravenous beryllium compounds in rabbits. Fed. Proc. 5, 221, 1946.PubMedGoogle Scholar
  44. 44.
    Nash, P., Experimental production of malignant tumors by beryllium. Lancet 1: 519, 1950.CrossRefGoogle Scholar
  45. 45.
    Sissons, H. A., Bone sarcomas produced experimentally in the rabbit, using compounds of beryllium. Acta Unio Intern. Contra Cancrum 7: 171, 1950.Google Scholar
  46. 46.
    Reeves, A. L., D. Deitch, and A. J. Vorwald, Beryllium carcinogenesis. I. Inhalation exposure of rats to beryllium sulfate aerosol. Cancer Res. 27: 439–445, 1967.PubMedGoogle Scholar
  47. 47.
    Druckrey, H., H. Hamperl, and D. Schmahl, Cancerogene wirkung von metallischen queck-silber nach intraperitonealer gabe bei ratten. Z. Krebsforsch. 61: 511–519, 1957.PubMedCrossRefGoogle Scholar
  48. 48.
    Schmahl, D., and D. Steinhoff, Versuche zur krebserzeugung mit kolloidolen silberund goldosungen an ratten. Z. Krebsforsch. 63; 586–591, 1960.CrossRefGoogle Scholar
  49. 49.
    Furst, A., and R. T. Haro, Carcinogenicity of metal pi-complex compounds: Metallocenes. In: Abstracts of the 10th International Cancer Congress, Houston, Austin, University of Texas Press, 1970, p. 28.Google Scholar
  50. 50.
    Ball, R. A., G. Van Gelder, J. W. Green, Jr., and W. O. Reece, Neoplastic sequelae following subcutaneous implanation of mice with rare earth metals. Proc. Soc. Exp. Biol. Med., 135: 426–430, 1970.PubMedGoogle Scholar
  51. 51.
    Roe, F. J. C., E. Boyland, and K. Millican, Effect of oral administration of two tin compounds to rats over prolonged periods. Food Cosmet. Toxicol. 3: 277–280, 1965.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1980

Authors and Affiliations

  • Max Costa
    • 1
  1. 1.University of Texas Medical School at Houston

Personalised recommendations