Conservation of Bioresources at Ultra Low Temperatures
  • John G. Day
  • Keith C. Harding
  • Jayanthi Nadarajan
  • Erica E. Benson
Part of the Springer Protocols Handbooks book series (SPH)


Cryopreservation is the ultra-low temperature storage (usually in liquid nitrogen at ca. -135 to -196°C) of living cells, tissues and organs capable of resuming normal functions after retrieval from a cryobank. This chapter explains the basic principles of cryopreservation with respect to strategies currently used to cryoprotect the diverse biological materials held in cryogenic storage. Approaches used to minimize or obviate the lethal and sublethal effects of cryoinjury are particularly highlighted. Examples of how cryopreservation has been universally applied to safeguard and preserve the wide spectrum of biological resources used in agriculture, biotechnology, healthcare, and biodiversity conservation are summarized and general guidance is offered for the management of bioresources in cryobanks.


Biological resource center cryoinjury cryopreservation vitrification. 



The authors acknowledge the European Union's 5th Framework Programme, Quality of Life and Management of Living Resources, Research Infrastructures Biological Collections, COBRA Project QLRT-2000-01645 and CRYMCEPT Project (QLK5-CT-2002-01279). J Nadarajan acknowledges the European Social Fund, The Forest Research Institute of Malaysia and the University of Abertay Dundee for the support of her postgraduate studies.


  1. 1.
    Fox D (2006) Sub-zero survivors. New Scientist, 12th August, pp 34–38Google Scholar
  2. 2.
    Fuller B, Lane N, Benson EE (2004) Life in the frozen state CRC Press, London UKGoogle Scholar
  3. 3.
    Methå BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou L, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, Fraser CM (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. PNAS 102:10913–10918Google Scholar
  4. 4.
    Boyle R (1665) New experiments and observations touching cold. Royal Society of LondonGoogle Scholar
  5. 5.
    Spallanzani L (1776) Opuscoli di Fisca Animale E Vegetabile. Socia della Academie Di Londra De' Currosi della Natura di Germania Di Berlino Stockolm Gottinga Bologna Siena etc. Modena, ItalyGoogle Scholar
  6. 6.
    Lidforrs B (1907) Die Wintergrune Flora. Lunds Universitets Arsskrift 2:1–76Google Scholar
  7. 7.
    Maximov N (1912) Chemical protective agents of plants against freezing injury. Berichte Deutschen Bot Gesellschaft 30:52–65Google Scholar
  8. 8.
    Luyet BJ, Gehenio PM (1940) Life and death at low temperatures. Biodynamica, Normandy MissouriGoogle Scholar
  9. 9.
    Polge C, Smith AU, Parkes AS (1949) Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164:666PubMedGoogle Scholar
  10. 10.
    Smith AU (1950) Prevention of hemolysis during freezing and thawing of red blood cells. Lancet 2:910–911PubMedGoogle Scholar
  11. 11.
    Smith AU, Polge C (1950) Survival of spermatozoa at low temperatures. Nature 166:668PubMedGoogle Scholar
  12. 12.
    Lovelock JE (1953) The haemolysis of human red blood cells by freezing and thawing. Biochim Biophys Acta 10:414–426PubMedGoogle Scholar
  13. 13.
    Sakai A (1956) Survival of plant tissue at superlow temperatures. Low Temp Sci Ser B 14:17–23Google Scholar
  14. 14.
    Lovelock JE, Bishop MWH (1959) Prevention of freezing damage to living cells by dimethylsulphoxide. Nature 183:1394–1395PubMedGoogle Scholar
  15. 15.
    Smith AU (1961) Biological effects of freezing and supercooling. Williams and Wilkins, Baltimore, MDGoogle Scholar
  16. 16.
    Mazur P (1965) Causes of injury and frozen and thawed cells. Fed Proc 24: S175–S182PubMedGoogle Scholar
  17. 17.
    Meryman HT (1966) Cryobiology. Academic, LondonGoogle Scholar
  18. 18.
    Parkes AS (1966) Sex science and society. Oriel, Newcastle on Tyne, UKGoogle Scholar
  19. 19.
    Sakai A (1960) Survival of a twig of woody plants at −196°C. Nature 185:393–394Google Scholar
  20. 20.
    Meryman HT (1968) A modified model for the mechanisms of freezing injury in erythrocytes. Nature 218:333–336PubMedGoogle Scholar
  21. 21.
    Smith AU (1970) Current trends in cryobiology. Plenum, New YorkGoogle Scholar
  22. 22.
    Whittingham DG, Leibo SP, Mazur P (1972) Survival of mouse embryos frozen to −196°C and −269°C. Science 178:411–414PubMedGoogle Scholar
  23. 23.
    Franks F (1975) Water: a comprehensive treatise. Plenum, New YorkGoogle Scholar
  24. 24.
    Withers LA, King P (1980) A simple freezing unit and routine cryopreservation method for plant cell cultures. CryoLetters 1:213–220Google Scholar
  25. 25.
    Kartha KK, Leung NL, Moroginski LA (1982)In vitro growth and plant regeneration from cryopreserved meristems of cassava (Manihot esculenta Crantz). Zeitschrift Pflanzenphysiol Bd 107:S 133–140Google Scholar
  26. 26.
    Trounson A, Mohr L (1983) Human pregnancy following cryopreservation thawing and transfer of an eight-cell embryo. Nature 305:707–709PubMedGoogle Scholar
  27. 27.
    Zeilmaker GH, Alberta AT, Van Gent, Imprinetta, Rijkmans, Camilla MPM, Drogendijk, A at C (1984) Two pregnancies following transfer of intact frozenthawed embryos. Fertil Steril 42:293–296PubMedGoogle Scholar
  28. 28.
    Fahy GM, MacFarlane DR, Angell CA, Meryman HT (1984) Vitrification as an approach to cryopreservation. Cryobiology 21:407–426PubMedGoogle Scholar
  29. 29.
    Rall WF, Fahy G (1985) Ice-free cryopreservation of mouse embryos at −196°C by vitrification. Nature 313:573–575PubMedGoogle Scholar
  30. 30.
    Kartha KK (1985) Cryopreservation of plant cells and organs. CRC, Boca Raton, FLGoogle Scholar
  31. 31.
    Fabre J, Dereuddre J (1990) Encapsulation-dehydration an new approach to cryo-preservation of Solanum shoot-tips. CryoLetters 11:413–426Google Scholar
  32. 32.
    Sakai A, Kobayashi S, Oiyama I (1990) Survival by vitrification of nucellar cells of navel orange Citrus sinensis Osb var brasiliensis Tanaka cooled to −196°C. J Plant Physiol 137:465–470Google Scholar
  33. 33.
    Watson PF (1995) Artificial insemination and the preservation of semen. In: Lamming GE (ed) Marshall's physiology of reproduction. Churchill Livingstone, Edinburgh, Scotland, pp 747–869Google Scholar
  34. 34.
    Leibo SP (2004) The early history of gamete cryobiology. In: Fuller B, Lane N, Benson EE (eds) Life in the frozen state. CRC, Boca Raton, FL, pp 347–370Google Scholar
  35. 35.
    Day JG, McLellan MR (1995) Cryopreservation and freeze-drying protocols. Humana, Totowa, NJGoogle Scholar
  36. 36.
    Grout B (1995) Genetic preservation of plant cells in vitro, Springer lab manual. Springer-Verlag, Berlin, GermanyGoogle Scholar
  37. 37.
    Bajaj YPS (1995) Cryopreservation of plant germplasm I biotechnology in agriculture and forestry. vol 32. Springer-Verlag, Berlin, GermanyGoogle Scholar
  38. 38.
    Watson PF, Holt WV (2001) Cryobanking. The Genetic Resource Taylor and Francis, LondonGoogle Scholar
  39. 39.
    Benson EE (1999) Plant conservation biotechnology. Taylor and Francis, LondonGoogle Scholar
  40. 40.
    Engelmann F, Takagi H (2000) Cryopreservation of tropical plant germplasm; Current research progress and application. Japanese International Research Center for Agricultural Sciences, Tskuba, Japan, International Plant Genetic Resources Institute, Rome, ItalyGoogle Scholar
  41. 41.
    Leibo SP, Semple ME, Kroetsch TG (1994)In-vitro fertilization of oocytes by 37-year-old cryopreserved bovine spermatozoa. Theriogenology 42:1257–1262Google Scholar
  42. 42.
    Benson EE (2004) Cryoconserving algal and plant diversity: historical perspectives and future challenges. In: Fuller B, Lane N, Benson EE (eds) Life in the frozen state. CRC, Boca Raton, FL, pp 299–328Google Scholar
  43. 43.
    Mazur P (2004) Principles of cryobiology. In: Fuller B, Lane N, Benson EE (eds) Life in the frozen state. CRC, Boca Raton, FL, pp 299–328Google Scholar
  44. 44.
    Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Science 168:45–55Google Scholar
  45. 45.
    Day JG, Stacey GN (2007) Cryopreservation and freeze-drying protocols. Methods in molecular biology, Humana, Totowa, NJGoogle Scholar
  46. 46.
    Fleck RA, Pickup RW, Day JG, Benson EE (2006) Characterisation of cryoinjury in Euglena gracilis using flow-cytometry and cryomicroscopy. Cryobiology 52:261–268PubMedGoogle Scholar
  47. 47.
    Kedem O, Katchalsky A (1958) Membrane permeability modelling: Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta 27:229–246PubMedGoogle Scholar
  48. 48.
    Rubinsky B, Pegg DE (1988) A mathematical model for the freezing process in biological tissues. Proc R Soc Lond 234:343–358PubMedGoogle Scholar
  49. 49.
    Chuenkhum S, Cui Z (2006) The parameter conversion from the Kedem-Katchalsky model into the two-parameter model. CryoLetters 27:185–199PubMedGoogle Scholar
  50. 50.
    Gilmore JA, McGann LE, Gao DY, Peter AT, Kleinhans FW, Crister JK (1995) Effect of cryoprotectant solutes on water permeability of human spermatozoa. Biology of Reproduction 53:985–995PubMedGoogle Scholar
  51. 51.
    Benson EE (2008) Cryopreservation theory. In: Reed BM (ed) Plant cryopreser-vation: a practical guide. Springer, Germany, pp 15–32Google Scholar
  52. 52.
    Fahy GM, Wowk B, Wu J, Paynter S (2004) Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology 48:22–35PubMedGoogle Scholar
  53. 53.
    Fuller BJ (2004) Cryoprotectants: the essential antifreezes to protect life in the frozen state. CryoLetters 25:375–388PubMedGoogle Scholar
  54. 54.
    Volk GM, Walters C (2006) Plant vitrification solution 2 lowers water content and alters freezing behaviour in shoot tips during cryoprotection. Cryobiology 52:48–61PubMedGoogle Scholar
  55. 55.
    Benson EE, Bremner DH (2004) Oxidative stress in the frozen plant: a free radical point of view. In: Fuller B, Lane N, and Benson EE (eds) Life in the frozen state. CRC, FL, pp 205–242Google Scholar
  56. 56.
    Morris GJ, Clarke KJ, Clarke A (1977) The cryopreservation of Chlorella 3 Effect of heterotrophic nutrition on freezing tolerance. Arch Microbiol 114:249–254Google Scholar
  57. 57.
    Sakai A (2004) Plant cryopreservation. In: Fuller B, Lane N, Benson EE (eds) Life in the frozen state. CRC, FL, pp 329–346Google Scholar
  58. 58.
    Da Costa Nunes E, Benson EE, Oltramari AC, Araujo PS, Moser JR, Viana AM (2003)In vitro conservation of Cedrela fissilis (Meliaceae) a native tree of the Brazilian Atlantic Forest. Biodiversity and Conservation 12:837–848Google Scholar
  59. 59.
    Morris GJ (1976) The cryopreservation of Chlorella 2 effect of growth temperature on freezing tolerance. Arch Microbiol 107:309–312PubMedGoogle Scholar
  60. 60.
    Luo J, Reed BM (1997) Abscisic acid-responsive protein bovine serum albumin and proline pretreatments improve recovery of in vitro currant shoot tips and callus cryopreserved by vitrification. Cryobiology 34:240–250Google Scholar
  61. 61.
    Marco-Jimånez F, Lavara R, Vicente JS, Viudes-de-Castro MP (2006) Cryopreservation of rabbit spermatozoa with freezing media supplemented with reduced and oxidised glutathione. CryoLetters 27:261–268Google Scholar
  62. 62.
    Day JG, Brand JJ (2005) Cryopreservation methods for maintaining cultures. In: Andersen RA (ed) Algal culturing techniques. Academic, NY, pp 165–187Google Scholar
  63. 63.
    Fuller BJ, Paynter SJ (2007) Cryopreservation of mammalian embryos. In: Day JG, Stacey GN (eds) Cryopreservation and freeze-drying protocols. Humana, Totowa, NJ, pp 323–337Google Scholar
  64. 64.
    Morris GJ, Acton E, Avery S (1999) A novel approach to sperm cryopreservation. Human Reproduction 14:1013–1021PubMedGoogle Scholar
  65. 65.
    Faszer K, Draper D, Green JE, Morris GJ, Grout BWW (2006) Cryopreservation of horse semen under laboratory and field conditions using a Stirling cycle freezer. CryoLetters 27:179–184PubMedGoogle Scholar
  66. 66.
    Harding K, Day JG, Lorenz M, Timmerman H, Friedl T, Bremner DH, Benson EE (2004) Introducing the concept and application of vitrification for the cryo-conservation of algae – a min-review. Nova Hedwigia 79:207–226Google Scholar
  67. 67.
    Wood CB, Pritchard HW, Miller AP (2000) Simultaneous preservation of orchid seed and its fungal symbiont using encapsulation-dehydration is dependent upon moisture content and storage temperature. CryoLetters 21:125–136PubMedGoogle Scholar
  68. 68.
    Benson EE, Reed BM, Brennan R, Clacher KA, Ross DA (1996) Use of thermal analysis in the evaluation of cryopreservation protocols for Ribes nigrum L germ-plasm. CryoLetters 17:347–362Google Scholar
  69. 69.
    Benson EE, Johnston J, Muthusamy J, Harding K (2005) Physical and engineering perspectives of in vitro plant cryopreservation. In: Dutta Gupta S, Ibaraki Y(eds) Plant tissue culture engineering. Springer, Netherlands, pp 441–473Google Scholar
  70. 70.
    Mix-Wagner G, Schumacher HM, Cross RJ (2002) Recovery of potato apices after several years of storage in liquid nitrogen. CryoLetters 24:33–41Google Scholar
  71. 71.
    Gould EA (1995) Virus cryopreservation and storage In: Day JG, McLellan MR (eds) Cryopreservation and freeze-drying protocols. Humana, Totowa, NJ, pp 7–20Google Scholar
  72. 72.
    Tindall BJ (2007) Vacuum-drying and cryopreservation of prokaryotes. In: Day JG, Stacey GN (eds) Cryopreservation and freeze-drying protocols. Humana, Totowa, NJ, pp 73–97Google Scholar
  73. 73.
    Day JG (2007) Cryopreservation of microalgae and cyanobacteria. In: Day JG, Stacey GN (eds) Cryopreservation and freeze-drying protocols. Humana, Totowa, NJ, pp 139–149Google Scholar
  74. 74.
    Kilvington S (1995) Cryopreservation of pathogenic and non-pathogenic free-living amoebae. In: Day JG, McLellan MR (eds) Cryopreservation and freeze-drying protocols. Humana, Totowa, NJ, pp 63–69Google Scholar
  75. 75.
    Christofinis GJ, Miller H (1983) A simplified method for cryopreservation of Plasmodium falciparum from continuous in vitro cultures. Ann Trop Med Parisitol 77:123–126Google Scholar
  76. 76.
    Bond C (2007) Cryopreservation of yeast cultures. In: Day JG, Stacey GN (eds) Cryopreservation and freeze-drying protocols. Humana, Totowa, NJ, pp 107–115Google Scholar
  77. 77.
    Ryan MJ, Smith D (2007) Cryopreservation and freeze-drying of fungi employing centrifugal and shelf freeze-drying. In: Day JG, Stacey GN (eds) Cryopreservation and freeze-drying protocols. Humana, Totowa, NJ, pp 125–138Google Scholar
  78. 78.
    Homolka L, Ludmilla L, Nerud F (2006) Basidiomycete cryopreservation on perlite: Evaluation of a new method. Cryobiology 52:446–453PubMedGoogle Scholar
  79. 79.
    Burch J, Wilkinson T (2002) Cryopreservation of protonemata of Ditrichum cornubicum (Paton) comparing the effectiveness of four cryoprotectant pretreat-ments. CryoLetters 23:197–208PubMedGoogle Scholar
  80. 80.
    Reed BA, Dumet DJ, DeNoma JM, Benson EE (2001) Validation of cryopreser-vation protocols for plant germplasm conservation: a pilot study using. Ribes L Biodiversity & Conservation 10:939–949Google Scholar
  81. 81.
    Find JI, Krogstrup P, Moller JD, Noergaard J V, Kristensen MMH (1993) Cryopreservation of embryogenic suspension cultures of Picea sitchensis and subsequent plant regeneration. Scan J Forest Res 8:156–162Google Scholar
  82. 82.
    Nadarajan J, Staines HJ, Benson EE, Mansor M, Krishnapillay B, Harding K. (2006) Optimization of cryopreservation protocol for Stericulia cordata Blume Zygotic embryos using Taguchi experiments. J Tropical Forest Sci 18:166–172Google Scholar
  83. 83.
    Irdani T, Carletti B, Ambrogioni L, Roversi PF (2006) Rapid-cooling and storage of plant nematodes at −140°C. Cryobiology 52:319–322PubMedGoogle Scholar
  84. 84.
    Rajamohan A, Leopold RA, Wang WB, Harris M, McCombs SD, Peabody NC, Fisher K (2003) Cryopreservation of the Mediterranean fruit fly. CryoLetters 24:125–132PubMedGoogle Scholar
  85. 85.
    MacFadzen IRB (1995) Cryopreservation of Crassostrea gigas. In: Day JG, McLellan MR (eds) Cryopreservation and freeze-drying protocols. Humana, Totowa, NJ, pp 145–149Google Scholar
  86. 86.
    Kopeika E, Kopeika J, Zhang T (2007) Cryopreservation of fish sperm. In: Day JG, Stacey GN (eds) Cryopreservation and freeze-drying protocols, Humana, Totowa, NJ, pp 201–215Google Scholar
  87. 87.
    Wishart G (2007) Cryopreservation of avian spermatozoa. In: Day JG, Stacey GN (eds) Cryopreservation and freeze-drying protocols. Humana, Totowa, NJ, pp 217–223Google Scholar
  88. 88.
    Curry MR (2007) Cryopreservation of mammalian semen. In: Day JG, Stacey GN (eds) Cryopreservation and freeze-drying protocols. Humana, Totowa, NJ, pp 301–310Google Scholar
  89. 89.
    Pegg DE, Wusteman MC, Wang L (2006) Cryopreservation of articular cartilage Part 1: Conventional cryopreservation methods. Cryobiology 52:335–346PubMedGoogle Scholar
  90. 90.
    Hunt CJ, Pegg DE, Armitage SE (2006) Optimising cryopreservation protocols for haematopoietic progenitor cells: a methodological approach for umbilical blood cord. CryoLetters 27:73–85PubMedGoogle Scholar
  91. 91.
    Spurr EE, Wiggins NE, Marsden KA, Lowenthal RM, Ragg SJ (2002) Cryopreserved human haematopoietic stem cells retain engraftment potential after extended (5–14) years of cryostorage. Cryobiology 44:210–217PubMedGoogle Scholar
  92. 92.
    Terry C, Dhawan A, Mitry RR, Hughes RD (2006) Cryopreservation of isolated human hepatocytes for transplantation: state of the art. Cryobiology 53:149–159PubMedGoogle Scholar
  93. 93.
    Morris CB (2007) Cryopreservation of animal and human cell lines. In: Day JG and Stacey GN (eds) Cryopreservation and freeze-drying protocols. Humana, Totowa, NJ, pp 225–234Google Scholar
  94. 94.
    Watt SM, Austin E, Armitage S (2007) Cryopreservation of haematopoietic stem/ progenitor cells for therapeutic use. In: Day JG, Stacey GN (eds) Cryopreservation and freeze-drying protocols. Humana, Totowa, NJ, pp 235–257Google Scholar
  95. 95.
    Sputtek A (2007) Cryopreservation of red blood cells and platelets. In: Day JG, Stacey GN (eds) Cryopreservation and freeze-drying protocols. Humana, Totowa, NJ, pp 281–299Google Scholar
  96. 96.
    Paynter SJ, Fuller BJ (2007) Cryopreservation of mammalian oocytes. In: Day JG, Stacey GN (eds) Cryopreservation and freeze-drying protocols. Humana, Totowa, NJ, pp 311–322Google Scholar
  97. 97.
    Dittrich R, Maltaris T (2006) A simple freezing protocol for the use of an open freezing system for cryopreservation of ovarian tissue. Cryobiology 52:166PubMedGoogle Scholar
  98. 98.
    Newton H, Aubard Y, Rutherford A, Sharma V, Gosden R (1996) Low temperature storage and grafting of human ovarian tissue. Human Reprod 11:1487–1491Google Scholar
  99. 99.
    Strumia MM, Hodge CC (1945) Frozen human skin grafts. Ann Surg 121:860–865PubMedGoogle Scholar
  100. 100.
    Konstantinow A, Muhlbauer W, Hartinger AG, von Donnersmarck G (1991) Skin banking: a simple method for cryopreservation of split thickness skin and cultures epidermal keratinocytes. Ann Plast Surg 26:89–97PubMedGoogle Scholar
  101. 101.
    Donelly ET, Steele EK, McClure N, Lewis SEM (2001) Assessment of DNA integrity and morphology of ejaculated spermatozoa from fertile and infertile men before and after cryopreservation. Human Reproduction 16:1191–1199Google Scholar
  102. 102.
    Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. CryoLetters 25:3–22PubMedGoogle Scholar
  103. 103.
    Stacey G (2004) Fundamental issues for cell-line banks in biotechnology and regulatory affairs. In: Fuller B, Lane N, Benson EE (eds) Life in the frozen state. CRC, London, pp. 437–452Google Scholar
  104. 104.
    Kate KT, Laird SA (1999) The commercial use of biodiversity–access to genetic resources and benefit sharing. Earthscan Publications, LondonGoogle Scholar
  105. 105.
    Kirsop B, Doyle A (1991) Maintenance of microorganisms and cultured cells. Academic, LondonGoogle Scholar
  106. 106.
    Haefner B (2003) Drugs from the deep: marine natural products as drug candidates. Discovery Today 8:536–544Google Scholar
  107. 107.
    Hådoin H, Pearson J, Day JG, Philip D, Young AJ, Hall TJ (2006)Porphyridium cruentum A-408 and Planktothrix A-404 retain their capacity to produce bio-technologically exploitable metabolites after cryopreservation. J Appl Phycol 18:1–7Google Scholar
  108. 108.
    Ryan MJ, Smith D, Bridge PD, Jeffries P (2003) The relationship between fungal preservation method and secondary metabolite production in Metarhizium ani-sopliae and Fusarium oxysporum. W J Microbiol Biotechnol 19:839–844Google Scholar
  109. 109.
    Radhakrishna TG, Ramanatha CL, Gupta C, Reddy NC (1983) Economics of artificial insemination and calves born from liquid semen and frozen semen. Ind J Anim Reprod 3:44–45Google Scholar
  110. 110.
    Ludvigsen S (2003) Speech by the Norwegian Minister of Fisheries – seminar hosted by the Brazilian Ministry of Fisheries – Brasilia – 7 October 2003Google Scholar
  111. 111.
    Ashmore SE (1997) Status report on the development and application of in vitro techniques for the conservation and use of plant genetic resources IPGRI Rome ItalyGoogle Scholar
  112. 112.
    Keller ER, Senula A, Leunufna S, Grube M (2006) Slow growth storage and cryopreservation-tools to facilitate germplasm maintenance of vegetatively propagate crops and living plant collections. Int J Refrigeration 29:411–417Google Scholar
  113. 113.
    Park YS, Barrett JD, Bonga JM (1998) Application of somatic embryogenesis in high-value clonal forestry: deployment genetic control and stability of cryopreserved clones. In Vitro Cell Dev Biol-Plant 34:231–239Google Scholar
  114. 114.
    Benson EE, Harding K, Johnston J, Day JG (2005) From ecosystems to cry-obanks: the role of cryo-conservation. In: Benett IJ, Bunn E, Clarke H, McComb JA (eds) The preservation and sustainable utilization of global plant diversity. Contributing to a sustainable future. Australian Branch of the International Association for Plant Tissue Culture & Biotechnology, Perth Western, Australia, pp 30–44Google Scholar
  115. 115.
    Panis B, Tien Thinh N (2001) Cryopreservation of Musa germplasm International Network for the Improvement of Banana and Plantains Technical Guidelines INIBAP Montpellier FranceGoogle Scholar
  116. 116.
    Schumacher HM (1999) Cryo-conservation of industrially important plant cell cultures. In: Benson EE (ed) Plant conservation biotechnology. Taylor and Francis, London, pp 125–138Google Scholar
  117. 117.
    Touno K, Yoshimatsu K, Shimomura K (2006) Characteristics of Atropa belladonna hairy roots cryopreserved by vitrification method. CryoLetters 27:65–72PubMedGoogle Scholar
  118. 118.
    Crosier A, Pukashenthi BS, Henghali JN, Howard J, Dickman AJ, Marker L, Wildt DE (2006) Cryopreservation of spermatozoa from wild-born Namibian cheetahs (Acinonyx jubatus) influence of glycerol on cryosurvival. Cryobiology 52:169–181PubMedGoogle Scholar
  119. 119.
    Pickard A, Holt WV (2004) Cryopreservation as a supporting measure in species conservation: not the frozen zoo! In: Fuller B, Lane N, Benson EE (eds) Life in the frozen state. CRC, FL, pp 393–414Google Scholar
  120. 120.
    Pence VC (1999) The application of biotechnology for the conservation of endangered plants. In: Benson EE (ed) Plant conservation biotechnology. Taylor and Francis, London, pp 227–250Google Scholar
  121. 121.
    González-Benito ME, Martin C, Iriondo JM, Pårez C (1999) Conservation of the rare and endangered plants endemic to Spain. In: Benson EE (ed) Plant conservation biotechnology. Taylor and Francis, London, pp 251–264Google Scholar
  122. 122.
    Touchell DH, Dixon KW (1993) Cryopreservation of seed of Western Australian native species. Biodiversity and conservation 2:594–602Google Scholar
  123. 123.
    Muthusamy J, Staines HJ, Benson EE, Mansor M, Krishnapillay B (2005) Investigating the use of fractional replication and Taguchi techniques in cryop-reservation: a case study using orthodox seeds of a tropical rainforest tree species. Biodiversity and conservation 14:3169–3185Google Scholar
  124. 124.
    Thurston LM, Watson PF, Holt WV (2002) Semen cryopreservation: a genetic explanation for species and individual variation. CryoLetters 23:255–262PubMedGoogle Scholar
  125. 125.
    Nadarajan J (2005) Development of efficient experimental strategies for the cryopreservation of problematic tropical rainforest tree germplasm. PhD Thesis University of Abertay Dundee and The Forest Research Institute of MalaysiaGoogle Scholar
  126. 126.
    Nadarajan J, Staines HJ, Benson EE, Mansor M, Krishnapillay B, Harding K (2006) Optimization of cryopreservation protocol for Sterculia cordata Blume Zygotic embryos using Taguchi experiments. J Tropical Forest Sci 18:166–172Google Scholar
  127. 127.
    Dussert S, Engelmann F, Noirot M (2003) Development of probabilistic tools to assist in the establishment and management of cryopreserved plant germplasm collections. CryoLetters 24:149–160PubMedGoogle Scholar
  128. 128.
    Wusteman M, Hunt CJ (2004) The scientific basis for tissue banking. In: Fuller B, Benson EE, Lane N (eds) Life in the frozen state. CRC, Boca Raton, FL, pp 541–562Google Scholar
  129. 129.
    Armitage WJ, Dale W, Alexander EA (2005) Protocols for thawing and cryopro-tectant dilution of heart valves. Cryobiology 50:17–20PubMedGoogle Scholar
  130. 130.
    Donnez J, Dolmans MM, Demylle D, Jadoul P, Pirard C, Squifflet J, Martinez-Madrid B, van Langendonckt A (2004) Livebirth after ortotopic transplantation of cryopreserved ovarian tissue. Lancet 16:1405–1410Google Scholar
  131. 131.
    Meirow D, Levron J, Eldar-Geva T, Hardan I, Fridman Y, Zalel E, Schiff J, Dor J (2005) Pregnancy after transplantation of cryopreserved ovarian tissues in a patient with ovarian failure after chemotherapy. N Engl J Med 353:318–321PubMedGoogle Scholar
  132. 132.
    Oh HY, Che ZM, Hong JC, Lee EJ, Lee SJ, Kin J (2005) Cryopreservation of human teeth for future organization of a tooth bank – A preliminary study. CryoLetters 51:322–329Google Scholar
  133. 133.
    Routledge C, Armitage WJ (2003) Cryopreservation of cornea: a low cooling rate improves functional survival of endothelium after freezing and thawing. Cryobiology 46:277–283PubMedGoogle Scholar
  134. 134.
    Pegg DE (2001) The current status of tissue cryopreservation. CryoLetters 2:105–114Google Scholar
  135. 135.
    Human Fertilisation and Embryology Authority (1998) Consultation on the safe cryopreservation of gametes and embryos HFEA London UKGoogle Scholar
  136. 136.
    Bielanski A, Bergeron H, Lau PCK, Devenish J (2003) Microbial contamination of embryos and semen during long term banking in liquid nitrogen. Cryobiology 46:146–152PubMedGoogle Scholar
  137. 137.
    Tomlinson M (2005) Managing risks associated with cryopreservation. Human Reprod 20:1751–1756Google Scholar
  138. 138.
    Tedder RS, Zuckerman MA, Goldstone AH, Hawkins AE, Fielding A, Briggs EM, Irwin D, Blair S, Gorman AM, Patterson KG, Linch DC, Heptonstall J, Brink NS (1995) Hepatitis B transmission from a contaminated cryopreservation tank. Lancet 346:137–140PubMedGoogle Scholar
  139. 139.
    Morris GJ (2005) The origin ultrastructure and microbiology of the sediment accumulating in liquid nitrogen storage vessels. Cryobiology 50:231–238PubMedGoogle Scholar
  140. 140.
    Medrano A, Cabrera C, González F, Batista M, Gracia A (2002) Is sperm cryo preservation at −150°C a feasible alternative? CryoLetters 23:167–172PubMedGoogle Scholar
  141. 141.
    Stacey GN, Day JG (2007) Long-term ex situ conservation of Biological Resources and the role of Biological Resource Centres. In: Day JG, Stacey GN (eds) Cryopreservation and freeze-drying protocols. Humana, Totowa, NJ, pp 1–14Google Scholar
  142. 142.
    Budapest Treaty Regulations (1977) Budapest treaty on the international recognition of the deposit of microorganisms for the purposes of patent procedure. World Intellectual Property Organisation GenevaGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • John G. Day
    • 1
  • Keith C. Harding
    • 2
  • Jayanthi Nadarajan
    • 3
  • Erica E. Benson
    • 4
  1. 1.Curator CCAP, Culture Collection of Algae and Protozoa, Scottish Association for Marine ScienceDunstaffnage Marine LaboratoryScotlandUK
  2. 2.Environmental Science and BiotechnologyScotlandUK
  3. 3.Millennium Seed BankRoyal Botanic Gardens, Ardingly, Haywards HeathUK
  4. 4.Environmental Science and BiotechnologyScotlandUK

Personalised recommendations