Advertisement

Surface Plasmon Resonance

  • K. Scott Phillips
  • Quan Jason Cheng
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

1. Introduction

SPR is an elegant surface sensitive optical technique most commonly employed for biointeraction analysis on a flat substrate. Although the concept was suggested as early as 1968 (1,2), the use of SPR for biosensing in its present capacity started to gain momentum from the mid-1980s (3). The most important advantage of SPR is its label-free nature. As explained below, SPR measures changes in the amount of material within about 200 nm of the surface. Because detection is based on refractive index, rather than a reporter molecule such as a fluorophore, there is no need to label the material that will be detected. The downside of this advantage is lack of specificity. Anything that binds or sticks to the surface will be detected, so one must be careful to eliminate this type of interference through careful experimental design, sophisticated surface chemistry, and often the use of a reference channel for comparison. Another advantage of SPR is that it is conducted in real...

Keywords

Imaging Spectroscopy Minimum Angle Biomolecular Interaction Refractive Index Environment Support Lipid Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kretschm E, Raether H (1968) Radiative decay of non radiative surface plasmons excited by light. Zeitschrift Fur Naturforschung Part a-Astrophysik Physik Und Physikalische Chemie A 23:2135–213Google Scholar
  2. 2.
    Otto A (1968) Excitation of nonradiative surface plasma waves in silver by method of frustrated total reflection. Zeitschrift Fur Physik 216:398–&CrossRefGoogle Scholar
  3. 3.
    Liedberg B, Nylander C, Lundstrom I (1983) Surface-plasmon resonance for gas-detection and biosensing. Sensors and Actuators 4:299–304CrossRefGoogle Scholar
  4. 4.
    Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539PubMedCrossRefGoogle Scholar
  5. 5.
    Calander N (2006) Molecular detection and analysis by using surface plasmon resonances. Current Anal Chem 2:203–211CrossRefGoogle Scholar
  6. 6.
    Nedelkov D, Nelson RW (2006) Surface plasmon resonance mass spectrometry for protein analysis. Meth Mol Bio 328:131–139Google Scholar
  7. 7.
    Rich RL, Myszka DG (2005) Survey of the year 2004 commercial optical biosensor literature. J Mol Recognition 18:431–478CrossRefGoogle Scholar
  8. 8.
    Homola J, Myszka D, Sinclair S (2002) Surface plasmon biosensors. In: Optical biosensors: present and future: Amsterdam: Newyork: Elsevier, 207, 251Google Scholar
  9. 9.
    McDonnell JM (2001) Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Current Opinion Chem Biol 5:572–577CrossRefGoogle Scholar
  10. 10.
    Rich RL, Myszka DG (2000) Advances in surface plasmon resonance biosensor analysis. Current Opin Biotechnol 11:54–61CrossRefGoogle Scholar
  11. 11.
    Karlsson R, Michaelsson A, Mattsson L (1991) Kinetic-analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system. J Immunol Methods 145:229–240PubMedCrossRefGoogle Scholar
  12. 12.
    Phillips KS, Cheng O (2007) Recent advances in surface plasmon resonance based techniques for bioanalysis. Anal Bioanal Chem 387:1831–1840PubMedCrossRefGoogle Scholar
  13. 13.
    Steiner G (2004) Surface plasmon resonance imaging. Anal Bioanal Chem 379:328–331PubMedCrossRefGoogle Scholar
  14. 14.
    Cooper MA (2003) Label-free screening of bio- molecular interactions. Anal Bioanal Chem 377:834–842PubMedCrossRefGoogle Scholar
  15. 15.
    Ince R, Narayanaswamy R (2006) Analysis of the performance of interferometry, surface plasmon resonance and luminescence as biosensors and chemosensors. Analytica Chimica Acta 569:1–20CrossRefGoogle Scholar
  16. 16.
    Katsamba PS, Navratilova I, Calderon-Cacia M, Fan L, Thornton K, Zhu MD, Vanden Bos T, Forte C, Friend D, Laird-Offringa I, Tavares G, Whatley J, Shi EG, Widom A, Lindquist KC, Klakamp S, Drake A, Bohmann D, Roell M, Rose L, Dorocke J, Roth B, Luginbuhl B, Myszka DG (2006) Kinetic analysis of a high-affinity antibody/antigen interaction performed by multiple Biacore users. Anal Biochem 352:208–221PubMedCrossRefGoogle Scholar
  17. 17.
    Besenicar M, Macek P, Lakey JH, Anderluh G (2006) Surface plasmon resonance in protein-membrane interactions. Chem Physics Lipids 141:169–178CrossRefGoogle Scholar
  18. 18.
    Mukhyopadyay R (2005) Anal Chem: 313A–317AGoogle Scholar
  19. 19.
    Salim K, Bottomley MJ, Querfurth E, Zvelebil MJ, Gout I, Scaife R, Margolis RL, Gigg R, Smith CIE, Driscoll PC, Waterfield MD, and Panayotou G (1996) Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton's tyrosine kinase Embo J 15(22):6241–6250Google Scholar
  20. 20.
    Mach H, Volkin DB, Burke CJ, Middaugh CR, Linhardt RJ, Fromm JR, Loganathan D, Mattsson L (1993) Nature of the Interaction of Heparin with Acidic Fibroblast Growth-Factor. Biochemistry 32:5480–5489PubMedCrossRefGoogle Scholar
  21. 21.
    Kuziemko GM, Stroh M, Stevens RC (1996) Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance. Biochemistry 35:6375–6384PubMedCrossRefGoogle Scholar
  22. 22.
    Natsume T, Nakayama H, Jansson O, Isobe T, Takio K, Mikoshiba K (2000) Combination of biomolecular interaction analysis and mass spectrometric amino acid sequencing, Anal Chem 72:4193–4198PubMedCrossRefGoogle Scholar
  23. 23.
    Caruso F, Jory MJ, Bradberry GW, Sambles JR, Furlong DN (1998) Acousto-optic surface-plasmon resonance measurements of thin films on gold. J App Physics 83:1023–1028CrossRefGoogle Scholar
  24. 24.
    Jordan CE, Frutos AG, Thiel AJ, Corn RM (1997) Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces. Anal Chem 69:4939–4947CrossRefGoogle Scholar
  25. 25.
    Nelson BP, Grimsrud TE, Liles MR, Goodman RM, Corn RM (2001) Surface plas-mon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal Chem 73:1–7PubMedCrossRefGoogle Scholar
  26. 26.
    Wegner GJ, Lee HJ, Marriott G, Corn RM (2003) Fabrication of histidine-tagged fusion protein arrays for surface plasmon resonance imaging studies of protein-protein and protein-DNA interactions. Anal Chem 75:4740–4746PubMedCrossRefGoogle Scholar
  27. 27.
    Jensen KK, Orum H, Nielsen PE, Norden B (1997) Kinetics for hybridization of peptide nucleic acids (PNA) with DNA and RNA studied with the BIAcore technique. Biochemistry 36:5072–5077PubMedCrossRefGoogle Scholar
  28. 28.
    Wegner GJ, Lee HJ, Corn RM (2002) Characterization and optimization of peptide arrays for the study of epitope-antibody interactions using surface plasmon resonance imaging. Anal Chem 74:5161–5168PubMedCrossRefGoogle Scholar
  29. 29.
    Smith EA, Kyo M, Kumasawa H, Nakatani K, Saito I, Corn RM (2002) Chemically induced hairpin formation in DNA monolayers. J Am Chem Soc 124:6810–6811PubMedCrossRefGoogle Scholar
  30. 30.
    Karlsson R, Michaelsson A, Mattsson L (1991) Kinetic-analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system. J Immunol Meth 145:229–240CrossRefGoogle Scholar
  31. 31.
    Ostuni E, Chapman RG, Holmlin RE et al (2001) A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir 17(18):5605–5620CrossRefGoogle Scholar
  32. 32.
    Johnsson B, Lofas S, Lindquist G (1991) Immobilization of proteins to a car-boxymethyldextran-modified gold surface for biospecific interaction analysis in surface-plasmon resonance sensors. Anal Biochem 198:268–277PubMedCrossRefGoogle Scholar
  33. 33.
    Holliger P, Prospero T, Winter G (1993) Diabodies – small bivalent and bispecific antibody fragments. Proc Nat Acad Sci U S A 90:6444–6448CrossRefGoogle Scholar
  34. 34.
    Griffiths AD, Malmqvist M, Marks JD, Bye JM, Embleton MJ, McCafferty J, Baier M, Holliger KP, Gorick BD, Hughesjones NC, Hoogenboom HR, Winter G (1993) Human anti-self antibodies with high specificity from phage display libraries. Embo J 12:725–734PubMedGoogle Scholar
  35. 35.
    Marks JD, Griffiths AD, Malmqvist M, Clackson TP, Bye JM, Winter G (1992): Bypassing immunization – building high-affinity human-antibodies by chain shuffling. Bio-Technology 10:779–783Google Scholar
  36. 36.
    Wikstrand CJ, Hale LP, Batra SK, Hill ML, Humphrey PA, Kurpad SN, McLendon RE, Moscatello D, Pegram CN, Reist CJ, Traweek ST, Wong AJ, Zalutsky MR, Bigner DD (1995) Monoclonal antibodies against EGFRvlll are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res. 55:3140–3148PubMedGoogle Scholar
  37. 37.
    Schier R, McCall A, Adams CP, Marshall KW, Merritt H, Yim M, Crawford RS, Weiner LM, Marks C, Marks JD (1996) Isolation of picomolar affinity Anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. J Mol Biol 263:551–567PubMedCrossRefGoogle Scholar
  38. 38.
    Pevsner J, Hsu SC, Braun JEA, Calakos N, Ting AE, Bennett MK, Scheller RH (1994): Specificity and regulation of a synaptic vesicle docking complex. Neuron 13:353–361CrossRefGoogle Scholar
  39. 39.
    Emery JG, McDonnell P, Burke MB, Deen KC, Lyn S, Silverman C, Dul E, Appelbaum ER, Eichman C, DiPrinzio R, Dodds RA, James IE, Rosenberg M, Lee JC, Young PR (1998) Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 273:14363–14367PubMedCrossRefGoogle Scholar
  40. 40.
    Calakos N, Bennett MK, Peterson KE, Scheller RH (1994) Protein-protein interactions contributing to the specificity of intracellular vesicular trafficking. Science 263:1146–1149PubMedCrossRefGoogle Scholar
  41. 41.
    41 Gee SH, Madhavan R, Levinson SR, Caldwell JH, Sealock R, Froehner SC (1998) Interaction of muscle and brain sodium channels with multiple members of the syntrophin family of dystrophin-associated proteins. J Neurosci 18:128–137PubMedGoogle Scholar
  42. 42.
    Alam SM, Travers PJ, Wung JL, Nasholds W, Redpath S, Jameson SC, Gascoigne NRJ (1996) T-cell-receptor affinity and thymocyte positive selection. Nature 381:616–620PubMedCrossRefGoogle Scholar
  43. 43.
    Greenlund AC, Morales MO, Viviano BL, Yan H, Krolewski J, Schreiber RD (1995) Stat recruitment by tyrosine-phosphorylated cytokine receptors – an ordered reversible affinity-driven process. Immunity 2:677–687PubMedCrossRefGoogle Scholar
  44. 44.
    Schuster SC, Swanson RV, Alex LA, Bourret RB, Simon MI (1993) Assembly and function of a quaternary signal-transduction complex monitored by surface-plasmon resonance. Nature 365:343–347PubMedCrossRefGoogle Scholar
  45. 45.
    Donaldson DD, Whitters MJ, Fitz IJ, Neben TY, Finnerty H, Henderson SL, O'Hara RM, Beier DR, Turner KJ, Wood CR, Collins M (1998) The murine IL-13 receptor alpha 2: molecular cloning, characterization, and comparison with marine IL-13 receptor. J Immunol 161:2317–2324PubMedGoogle Scholar
  46. 46.
    Nishikawa J, Saito K, Goto J, Dakeyama F, Matsuo M, Nishihara T (1999) New screening methods for chemicals with hormonal activities using interaction of nuclear hormone receptor with coactivator. Toxicol Appl Pharmacol 154:76–83PubMedCrossRefGoogle Scholar
  47. 47.
    Lyons DS, Lieberman SA, Hampl J, Boniface JJ, Chien YH, Berg LJ, Davis MM (1996) A TCR binds to antagonist ligands with lower affinities and faster dissociation rates than to agonists. Immunity 5:53–61PubMedCrossRefGoogle Scholar
  48. 48.
    Corr M, Slanetz AE, Boyd LF, Jelonek MT, Khilko S, Alramadi BK, Kim YS, Maher SE, Bothwell ALM, Margulies DH (1994) T-Cell receptor-Mhc class-I peptide interactions–affinity, kinetics, and specificity. Science 265:946–949PubMedCrossRefGoogle Scholar
  49. 49.
    Matsui K, Boniface JJ, Steffner P, Reay PA, Davis MM (1994) Kinetics of T-cell receptor-binding to peptide I-E(K) complexes – correlation of the dissociation rate with T-cell responsiveness. Proc Natl Acad Sci USA 91:12862–12866PubMedCrossRefGoogle Scholar
  50. 50.
    Brown MH, Boles K, van der Merwe PA, Kumar V, Mathew PA, Barclay AN (1998) 2B4, the natural killer and T cell immunoglobulin super-family surface protein, is a ligand for CD48. J Exp Med 188:2083–2090PubMedCrossRefGoogle Scholar
  51. 51.
    vanderMerwe PA, Bodian DL, Daenke S, Linsley P, Davis SJ (1997) CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J Exp Med 185:393–403CrossRefGoogle Scholar
  52. 52.
    Corr M, Boyd IF, Frankel SR, Kozlowski S, Padlan EA, Margulies DH (1992) Endogenous peptides of a soluble major histocompatibility complex class-I molecule, H-2I(D)(S) – sequence motif, quantitative binding, and molecular modeling of the complex. J Exp Med 176:1681–1692PubMedCrossRefGoogle Scholar
  53. 53.
    Kersh GJ, Kersh EN, Fremont DH, Allen PM (1998) High- and low-potency ligands with similar affinities for the TCR: The importance of kinetics in TCR signaling. Immunity 9:817–826PubMedCrossRefGoogle Scholar
  54. 54.
    Willcox BE, Gao GF, Wyer JR, Ladbury JE, Bell JI, Jakobsen BK, van der Merwe PA (1999) TCR binding to peptide-MHC stabilizes a flexible recognition interface. Immunity 10:357–365PubMedCrossRefGoogle Scholar
  55. 55.
    Muslin AJ, Tanner JW, Allen PM, Shaw AS (1996) Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84:889–897PubMedCrossRefGoogle Scholar
  56. 56.
    Houseman BT, Huh JH, Kron SJ, Mrksich M (2002) Peptide chips for the quantitative evaluation of protein kinase activity. Nat Biotechnol 20:270–274PubMedCrossRefGoogle Scholar
  57. 57.
    Bartley TD, Hunt RW, Welcher AA, Boyle WJ, Parker VP, Lindberg RA, Lu HS, Colombero AM, Elliott RL, Guthrie BA, Holst PL, Skrine ID, Toso RJ, Zhang M, Fernandez E, Trail G, Varnum B, Yarden Y, Hunter T, Fox GM (1994) B61 Is a Ligand for the Eck receptor protein-tyrosine kinase. Nature 368:558–560PubMedCrossRefGoogle Scholar
  58. 58.
    James SR, Downes CI, Gigg R, Grove SJA, Holmes AB, Alessi DR (1996) Specific binding of the Akt-1 protein kinase to phosphatidylinositol 3,4,5-trisphosphate without subsequent activation. Biochem J 315:709–713PubMedGoogle Scholar
  59. 59.
    Ladbury JE, Lemmon MA, Zhou M, Green J, Botfield MC, Schlessinger J (1995) Measurement of the binding of tyrosyl phosphopeptides to Sh2 domains – a reappraisal. Proc Natl Acad Sci U S A 92:3199–3203PubMedCrossRefGoogle Scholar
  60. 60.
    Floresrozas H, Kelman Z, Dean FB, Pan ZQ, Harper PW, Elledge SJ, Odonnell M, Hurwitz J (1994) Cdk-interacting protein-1 directly binds with proliferating cell nuclear antigen and inhibits DNA-replication catalyzed by the DNA-polymerase-delta holoenzyme. Proc Natl Acad Sci U S A 91:8655–8659CrossRefGoogle Scholar
  61. 61.
    Iemura S, Yamamoto TS, Takagi C, Uchiyama H, Natsume T, Shimasaki S, Sugino H, Ueno N (1998) Direct binding of follistatin to a complex of bone- morphogenetic protein and its receptor inhibits ventral and epidermal cell fates in early Xenopus embryo. Proc Natl Acad Sci U S A 95:9337–9342PubMedCrossRefGoogle Scholar
  62. 62.
    Rickles RJ, Botfield MC, Weng ZG, Taylor JA, Green OM, Brugge JS, Zoller MJ (1994) Identification of Src, Fyn, Lyn, Pi3k and Abl Sh3 domain ligands using phage display libraries. Embo J 13:5598–5604PubMedGoogle Scholar
  63. 63.
    Boll W, Ohno H, Zhou S Y, Rapoport I, Cantley LC, Bonifacino JS, Kirchhausen T (1996) Sequence requirements for the recognition of tyrosine-based endocytic signals by clathrin AP-2 complexes. Embo J 15:5789–5795PubMedGoogle Scholar
  64. 64.
    Sapir T, Elbaum M, Reiner O (1997) Reduction of microtubule catastrophe events by LIS1, platelet-activating factor acetylhydrolase subunit. Embo J 16:6977–6984PubMedCrossRefGoogle Scholar
  65. 65.
    Heiska L, Alfthan K, Gronholm M, Vilja P, Vaheri A, Carpen O (1998) Association of ezrin with intercellular adhesion molecule-1 and -2 (ICAM-1 and ICAM-2)–Regulation by phosphatidylinositol 4,5-bisphosphate. J Biol Chem 273:21893–21900PubMedCrossRefGoogle Scholar
  66. 66.
    Li Y, Lee HJ, Corn RM (2007) Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging. Anal Chem 79:1082–1088PubMedCrossRefGoogle Scholar
  67. 67.
    Rothenhausler B, Knoll W (1988) Surface-plasmon microscopy. Nature 332:615–617CrossRefGoogle Scholar
  68. 68.
    Jordan CE, Corn RM (1997) Surface plasmon resonance imaging measurements of electrostatic biopolymer adsorption onto chemically modified gold surfaces. Anal Chem 69:1449–1456CrossRefGoogle Scholar
  69. 69.
    Kanda V, Kariuki JK, Harrison DJ, McDermott MT (2004) Label-free reading of microarray-based immunoassays with surface plasmon resonance imaging. Anal Chem 76:7257–7262PubMedCrossRefGoogle Scholar
  70. 70.
    Shumaker-Parr JS, Zareie MH, Aebersold R, Campbell CT (2004) Microspotting streptavidin and double-stranded DNA Arrays on gold for high-throughput studies of protein-DNA interactions by surface plasmon resonance microscopy. Anal Chem 76:918–929CrossRefGoogle Scholar
  71. 71.
    Lyon IA, Musick MD, Smith PC, Reiss BD, Pena DJ, Natan MJ (1999) Surface plasmon resonance of colloidal Au-modified gold films. Sensors and Actuators B-Chemical 54:118–124CrossRefGoogle Scholar
  72. 72.
    Phillips KS, Wilkop T, Wu JJ, Al-Kaysi RO, Cheng Q (2006) Surface plasmon resonance imaging analysis of protein-receptor binding in supported membrane arrays on gold substrates with calcinated silicate films. J Am Chem Soc 128:9590–9591PubMedCrossRefGoogle Scholar
  73. 73.
    Liebermann T, Knoll W (2000) Surface-plasmon field-enhanced fluorescence spectroscopy. Colloids Surfaces a-Physicochem Eng Aspects 171:115–130CrossRefGoogle Scholar
  74. 74.
    Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angewandte Chemie-International Edition 40:4128–4158CrossRefGoogle Scholar
  75. 75.
    Sigal GB, Bamdad C, Barberis A, Strominger J, Whitesides GM (1996) A self-assembled monolayer for the binding and study of histidine tagged proteins by surface plasmon resonance. Anal Chem 68:490–497PubMedCrossRefGoogle Scholar
  76. 76.
    Brockman JM, Frutos AG, Corn RM (1999). A multistep chemical modification procedure to create DNA arrays on gold surfaces for the study of protein-DNA interactions with surface plasmon resonance imaging. J Am Chem Soc 121:8044– 8051CrossRefGoogle Scholar
  77. 77.
    Lee HJ, Goodrich TT, Corn RM (2001) SPR Imaging measurements of 1-D and 2-D DNA microarrays created from microfluidic channels on gold thin films. Anal Chem 73:5525–5531CrossRefGoogle Scholar
  78. 78.
    Phillips KS, Han JH, Martinez M, Wang ZZ, Carter D, Cheng Q (2006) Nanoscale glassification of gold substrates for surface plasmon resonance analysis of protein toxins with supported lipid membranes. Anal Chem 78:596–603PubMedCrossRefGoogle Scholar
  79. 79.
    Tawa K, Morigaki K (2005) Substrate-supported phospholipid membranes studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy. Biophy J 89:2750–2758CrossRefGoogle Scholar
  80. 80.
    Szunerits S, Coffinier Y, Janel S, Boukherrouh R (2006) Stability of the gold/ silica thin film interface: Electrochemical and surface plasmon resonance studies. Langmuir 22:10716–10722PubMedCrossRefGoogle Scholar
  81. 81.
    Reimhult E, Zach M, Hook F, Kasemo B (2006) A multitechnique study of liposome adsorption on Au and lipid bilayer formation on SiO2. Langmuir 22:3313–3319PubMedCrossRefGoogle Scholar
  82. 82.
    Masson JF, Battaglia TM, Davidson MJ, Kim YC, Prakash AMC, Beaudoin S, Booksh KS (2005) Biocompatible polymers for antibody support on gold surfaces. Talanta 67:918–925PubMedCrossRefGoogle Scholar
  83. 83.
    Phillips KS, Han JH, Cheng Q (2007) Development of a “membrane cloaking” method for amperometric enzyme immunoassay and surface plasmon resonance analysis of proteins in serum samples. Anal Chem 79:899–907PubMedCrossRefGoogle Scholar
  84. 84.
    He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, Keating CD (2000) Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc 122:9071–9077CrossRefGoogle Scholar
  85. 85.
    Goodrich TT, Lee HJ, Corn RM (2004) Enzymatically amplified surface plasmon resonance imaging method using RNase H and RNA microarrays for the ultrasensitive detection of nucleic acids. Anal Chem 76:6173–6178PubMedCrossRefGoogle Scholar
  86. 86.
    Lee HJ, Wark AW, Li Y, Corn RM (2005) Fabricating RNA microarrays with RNA-DNA surface ligation chemistry. Anal Chem 77:7832–7837PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • K. Scott Phillips
    • 1
  • Quan Jason Cheng
    • 2
  1. 1.Department of Physiology and BiophysicsUniversity of CaliforniaIrvine
  2. 2.Department of ChemistryUniversity of CaliforniaRiverside

Personalised recommendations